ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Cycle Optical Response Caused by Dressed State with Phase-Locked Wavefunctions

304   0   0.0 ( 0 )
 نشر من قبل Hideki Hirori
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coherent interaction of light with matter imprints the phase information of the light field on the wavefunction of the photon-dressed electronic state. Driving electric field, together with a stable phase that is associated with the optical probe pulses, enables the role of the dressed state in the optical response to be investigated. We observed optical absorption strengths modulated on a sub-cycle timescale in a GaAs quantum well in the presence of a multi-cycle terahertz driving pulse using a near-infrared probe pulse. The measurements were in good agreement with the analytical formula that accounts for the optical susceptibilities caused by the dressed state of excitons, which indicates that the output probe intensity was coherently reshaped by the excitonic sideband emissions.



قيم البحث

اقرأ أيضاً

So far, selective excitation of a desired valley in the Brillouin zone of a hexagonal two-dimensional material has relied on using circularly polarized fields. We theoretically demonstrate a way to induce, control, and read valley polarization in hex agonal 2D materials on a few-femtosecond timescale using a few-cycle, linearly polarized pulse with controlled carrier-envelope phase. The valley pseudospin is encoded in the helicity of the emitted high harmonics of the driving pulse, allowing one to avoid additional probe pulses and permitting one to induce, manipulate and read the valley pseudospin all-optically, in one step. High circularity of the harmonic emission offers a method to generate highly elliptic attosecond pulses with a linearly polarized driver, in an all-solid-state setup.
Phase-locking an array of quantum cascade lasers is an effective way to achieve higher output power and beam shaping. In this article, based on Talbot effect, we show a new-type phase-locked array of mid-infrared quantum cascade lasers with an integr ated spatial- filtering Talbot cavity. All the arrays show stable in-phase operation from the threshold current to full power current. The beam divergence of the array device is smaller than that of a single-ridge laser. We use the multi-slit Fraunhofer diffraction mode to interpret the far-field radiation profile and give a solution to get better beam quality. The maximum power is just about 5 times that of a single-ridge laser for eleven-laser array device and 3 times for seven-laser array device. Considering the great modal selection ability, simple fabricating process and the potential for achieving better beam quality and smaller cavity loss, this new-type phase-locked array may be a hopeful and elegant solution to get high power or beam shaping.
Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state syste ms. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs quantum dot display mutual coherence with the excitation laser on a timescale exceeding 3 seconds. Exploiting this degree of mutual coherence we synthesize near-arbitrary coherent photon waveforms by shaping the excitation laser field. In contrast to post-emission filtering, our technique avoids both photon loss and degradation of the single photon nature for all synthesized waveforms. By engineering pulsed waveforms of single photons, we further demonstrate that separate photons generated coherently by the same laser field are fundamentally indistinguishable, lending themselves to creation of distant entanglement through quantum interference.
We report the generation of five phase-locked harmonics, f_1: 2403 nm, f_2: 1201 nm, f_3: 801 nm, f_4: 600 nm, and f_5: 480 nm with an exact frequency ratio of 1 : 2 : 3 : 4 : 5 by implementing a divide-by-three optical-frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.
We use a laser-driven single (In,Ga)As quantum dot (QD) in the dressed state regime of resonance fluorescence ($T = 4$ K) to observe the four $D_1$-transition lines of alkali atomic cesium ($Cs$) vapor at room temperature. We tune the frequency of th e dressing continuous-wave laser in the vicinity of the bare QD resonance $sim 335.116$ THz ($sim 894.592$ nm) at constant excitation power and thereby controllably tune the center and side channel frequencies of the probe light, i.e. the Mollow triplet. Resonances between individual QD Mollow triplet lines and the atomic hyperfine-split transitions are clearly identified in the $Cs$ absorption spectrum. Our results show that narrow-band (In,Ga)As QD resonance fluorescence (RF) is suitable to optically address individual transitions of the $D_1$ quadruplet without applying magnetic field or electric field tuning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا