ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effects of Spin-Excitons on the Surface States of SmB6: A Photoemission Study

129   0   0.0 ( 0 )
 نشر من قبل Alexander Gray
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of high-resolution valence-band photoemission spectroscopic study of SmB6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data is interpreted in terms of the existence of heavy 4f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about -9 meV at low temperatures. We attribute this feature to a resonance caused by the spin-exciton scattering in SmB6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. The existence of a low-energy spin-exciton may be responsible for the scattering which suppresses the formation of coherent surface quasi-particles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.



قيم البحث

اقرأ أيضاً

The mixed valent compound SmB6 is of high current interest as the first candidate example of topologically protected surface states in a strongly correlated insulator and also as a possible host for an exotic bulk many-body state that would manifest properties of both an insulator and a metal. Two different de Haas van Alphen (dHvA) experiments have each supported one of these possibilities, while angle resolved photoemission spectroscopy (ARPES) for the (001) surface has supported the first, but without quantitative agreement to the dHvA results. We present new ARPES data for the (110) surface and a new analysis of all published dHvA data and thereby bring ARPES and dHvA into substantial consistency around the basic narrative of two dimensional surface states.
The rise of topology in condensed matter physics has generated strong interest in identifying novel quantum materials in which topological protection is driven by electronic correlations. Samarium hexaboride is a Kondo insulator for which it has been proposed that a band inversion between $5d$ and $4f$ bands gives rise to topologically protected surface states. However, unambiguous proof of the existence and topological nature of these surface states is still missing, and its low-energy electronic structure is still not fully established. Here we present a study of samarium hexaboride by ultra-low-temperature scanning tunneling microscopy and spectroscopy. We obtain clear atomically resolved topographic images of the sample surface. Our tunneling spectra reveal signatures of a hybridization gap with a size of about $8 mathrm{meV}$ and with a reduction of the differential conductance inside the gap by almost half, and surprisingly, several strong resonances below the Fermi level. The spatial variations of the energy of the resonances point towards a microscopic variation of the electronic states by the different surface terminations. High-resolution tunneling spectra acquired at $100 mathrm{mK}$ reveal a splitting of the Kondo resonance, possibly due to the crystal electric field.
Recent renewed interest in the mixed valent insulator SmB6 comes from topological theory predictions and surface transport measurements of possible in-gap surface states whose existence is most directly probed by angle-resolved photoemission spectros copy (ARPES). Early photoemission leading up to a recent flurry of ARPES studies of in-gap states is reviewed. Conflicting interpretations about the nature of the Sm 4f-5d hybridization gap and observed X-point bands between the f-states and the Fermi level are critically assessed using the important tools of photon polarization and spatial dependence which also provide additional insight into the origin of the more ambiguous {Gamma}-point in-gap states.
A comprehensive understanding of spin-polarized photoemission is crucial for accessing the electronic structure of spin-orbit coupled materials. Yet, the impact of the final state in the photoemission process on the photoelectron spin has been diffic ult to assess in these systems. We present experiments for the spin-orbit split states in a Bi-Ag surface alloy showing that the alteration of the final state with energy may cause a complete reversal of the photoelectron spin polarization. We explain the effect on the basis of ab initio one-step photoemission theory and describe how it originates from linear dichroism in the angular distribution of photoelectrons. Our analysis shows that the modulated photoelectron spin polarization reflects the intrinsic spin density of the surface state being sampled differently depending on the final state, and it indicates linear dichroism as a natural probe of spin-orbit coupling at surfaces.
197 - Y. Ishida , T. Otsu , T.Shimada 2015
Recent studies suggest that an exemplary Kondo insulator SmB6 belongs to a new class of topological insulators (TIs), in which non-trivial spin-polarized metallic states emerge on surface upon the formation of Kondo hybridization gap in the bulk. Rem arkably, the bulk resistivity reaches more than 20 Ohm cm at 4 K, making SmB6 a candidate for a so-called bulk-insulating TI. We here investigate optical-pulse responses of SmB6 by pump-and-probe photoemission spectroscopy. Surface photovoltage effect is observed below ~90 K. This indicates that an optically-active band bending region develops beneath the novel metallic surface upon the bulk-gap evolution. The photovoltaic effect persists for >200 microsec, which is long enough to be detected by electronics devices, and could be utilized for optical gating of the novel metallic surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا