ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical variability of the magnetic field of some stars

52   0   0.0 ( 0 )
 نشر من قبل Jerzy Madej
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Apparent variability of the longitudinal magnetic fields in most stars is caused by rotation, which quantitavely changes projection of the magnetic field configuration on the line of sight. This is a purely geometrical effect and is not related to possible intrinsic changes of the field. In some stars we observe changes of the magnetic phase curve with time, which means that parameters of the magnetic field change. Such changes occur in some objects in time scale of several years, which is few orders of magnitude faster than predicted by theory. Those changes imply need for improvement of the theory of magnetic field evolution. We demonstrate changes of the rotational phase curves in few stars.

قيم البحث

اقرأ أيضاً

The magnetic chemically peculiar (mCP) stars of the upper main sequence exhibit periodic light, magnetic, radio, and spectroscopic variations that can be adequately explained by a model of a rigidly rotating magnetized star with persistent surface st ructures. The majority of mCP stars rotate at strictly constant periods. However, there are a few mCP stars whose rotation periods vary on timescales of decades while the shape of their phase curves remains unchanged. In the case of CU Vir and V901 Ori, we have detected cyclic period variations. We demonstrate that the period oscillations of CU Vir may be a consequence of the interaction of the internal magnetic field and differential rotation.
Massive star winds are important contributors to the energy, momentum and chemical enrichment of the interstellar medium. Strong, organized and predominantly dipolar magnetic fields have been firmly detected in a small subset of massive O-type stars. Magnetic massive stars are known to exhibit phase-locked variability of numerous observable quantities that is hypothesized to arise due to the presence of an obliquely rotating magnetosphere formed via the magnetic confinement of their strong outflowing winds. Analyzing the observed modulations of magnetic O-type stars is thus a key step towards the better understanding of the physical processes that occur within their magnetospheres. The dynamical processes that lead to the formation of a magnetosphere are formally solved utilizing complex MHD simulations. Recently, an Analytic Dynamical Magnetosphere (ADM) model has been developed that can quickly be employed to compute the time-averaged density, temperature and velocity gradients within a dynamical magnetosphere. Here, we exploit the ADM model to compute photometric and polarimetric observables of magnetic Of?p stars, to test geometric models inferred from magnetometry. We showcase important results on the prototypical Of?p-type star HD 191612, that lead to a better characterization of massive star wind and magnetic properties.
145 - C. Neiner , A. Martin , G. Wade 2018
About 10% of hot stars host a fossil magnetic field on the pre-main sequence and main sequence. However, the first magnetic evolved hot stars have been discovered only recently. An observing program has been set up to find more such objects. This wil l allow us to test how fossil fields evolve, and the impact of magnetism on stellar evolution. Already 7 evolved magnetic hot stars are now known and the rate of magnetic discoveries in the survey suggests that they host dynamo fields in addition to fossil fields. Finally, the weakness of the measured fields is compatible at first order with simple magnetic flux conservation, although the current statistics cannot exclude intrinsic decay or enhancement during stellar evolution.
We review the measurements of magnetic fields of OBA stars. Based on these data we confirm that magnetic fields are distributed according to a lognormal law with a mean log(B)=-0.5 (B in kG) with a standard deviation sigma=0.5. The shape of the magne tic field distribution is similar to that for neutron stars. This finding is in favor of the hypothesis that the magnetic field of a neutron star is determined mainly by the magnetic field of its predecessor, the massive OB star. Further, we model the evolution of an ensemble of magnetic massive stars in the Galaxy. We use our own population synthesis code to obtain the distribution of stellar radii, ages, masses, temperatures, effective magnetic fields and magnetic fluxes from the pre-main sequence (PMS) via zero age main sequence (ZAMS) up to the terminal age main sequence (TAMS) stages. A comparison of the obtained in our model magnetic field distribution (MFD) with that obtained from the recent measurements of the stellar magnetic field allows us to conclude that the evolution of magnetic fields of massive stars is slow if not absent. The shape of the real MFD shows no indications of the magnetic desert proposed previously. Based on this finding we argue that the observed fraction of magnetic stars is determined by physical conditions at the PMS stage of stellar evolution.
92 - B. Stelzer 2016
This article provides a review of X-ray variability from late-type stars with particular focus on the achievements of XMM-Newton and its potential for future studies in this field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا