ﻻ يوجد ملخص باللغة العربية
We demonstrate that there is macroscopic co-existence between regions with hexatic order and regions in the liquid/gas phase over a finite interval of packing fractions in active dumbbell systems with repulsive power-law interactions in two dimensions. In the passive limit this interval remains finite, similarly to what has been found in bidimensional systems of hard and soft disks. We did not find discontinuous behaviour upon increasing activity from the passive limit.
We study the stationary dynamics of an active interacting Brownian particle system. We measure the violations of the fluctuation dissipation theorem, and the corresponding effective temperature, in a locally resolved way. Quite naturally, in the homo
We provide a comprehensive quantitative analysis of localized and extended topological defects in the steady state of 2D passive and active repulsive Brownian disk systems. We show that, both in and out-of-equilibrium, the passage from the solid to t
We introduce the totally asymmetric exclusion process with Langmuir kinetics (TASEP-LK) on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay betw
We analyse the dynamics of a two dimensional system of interacting active dumbbells. We characterise the mean-square displacement, linear response function and deviation from the equilibrium fluctuation-dissipation theorem as a function of activity s
Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently