ﻻ يوجد ملخص باللغة العربية
A common approach to studying $beta$-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the $beta$-delayed proton emitting ($beta$p) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the $beta$-particle emitted from the $beta$p nucleus, an effect referred to here as $beta$-summing. We present an approach to determine an accurate correction for $beta$-summing. Our method relies on the determination of the mean implantation depth of the $beta$p nucleus within the DSSD by analyzing the shape of the total (proton + recoil + $beta$) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD.
The beta+ decay of very neutron deficient 43Cr has been studied by means of an imaging time projection chamber which allowed recording tracks of charged particles. Events of beta-delayed emission of one-, two-, and three protons were clearly identifi
Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purificat
The Neutrino Experiment with a Xenon TPC (NEXT) is intended to investigate the neutrinoless double beta decay of 136Xe, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway fo
The correlations of the decay products following the beta decay of nuclei have a long history of providing a low-energy probe of the fundamental symmetries of our universe. Over half a century ago, the correlation of the electrons following the decay
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44.8-kg (29.7 kg enriched >88% in Ge-76) to search for neutrinoless double beta decay in Ge-76. The next genera