ترغب بنشر مسار تعليمي؟ اضغط هنا

Half-life of 31Si

175   0   0.0 ( 0 )
 نشر من قبل Giancarlo D'Agostino Dr.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Half-life values are widely used in nuclear chemistry to model the exponential decay of the quantified radionuclides. The analysis of existing data reveals a general lack of information on the performed experiments and an almost complete absence of uncertainty budgets. This is the situation for 31Si, the radionuclide produced via neutron capture reaction recently used to quantify trace amounts of 30Si in a sample of the silicon material highly enriched in 28Si and used for the determination of the Avogadro constant. In order to improve the quality of the now recommended 157.36(26) min value, we carried out repeated observations of the 31Si decay rate via gamma-ray spectrometry measurements. This paper reports the result we obtained, including details of the experiment and the evaluation of the uncertainty.

قيم البحث

اقرأ أيضاً

The half-life of $^{212}$Po was measured with the highest up-to-date accuracy as $T_{1/2}=295.1(4)$ ns by using thorium-loaded liquid scintillator.
The half-life of the $^{20}$F ground state has been measured using a radioactive beam implanted in a plastic scintillator and recording $betagamma$ coincidences together with four CsI(Na) detectors. The result, $T_{1/2} = 11.0011(69)_{rm stat}(30)_{r m sys}$~s, is at variance by 17 combined standard deviations with the two most precise results. The present value revives the poor consistency of results for this half-life and calls for a new measurement, with a technique having different sources of systematic effects, to clarify the discrepancy.
A value of 0.28 +/- 0.02 s has been deduced for the half-life of the ground state of 60Mn, in sharp contrast to the previously adopted value of 51 +/- 6 s. Access to the low-spin 60Mn ground state was accomplished via beta decay of the 0+ 60Cr parent nuclide. New, low-energy states in 60Mn have been identified from beta-delayed gamma-ray spectroscopy. The new, shorter half-life of 60Mn^g is not suggestive of isospin forbidden beta decay, and new spin and parity assignments of 1+ and 4+ have been adopted for the ground and isomeric beta-decaying states, respectively, of 60Mn.
We perform coincidence measurements between $alpha$ particles and $gamma$ rays from a $^{233}$U source to determine the half-lives of the excited state in a $^{229}$Th nucleus. We first prove that the half-lives of 42.43- and 164.53-keV states are co nsistent with literature values, whereas that of the 97.14-keV state (93(7) ps) deviates from a previously measured value (147(12) ps). The half-lives of 71.83- and 163.25-keV states are determined for the first time. Based on the obtained half-lives and the Alaga rule, we estimate the radiative half-life of the low-energy isomeric state ($^{229m}$Th) to be $5.0(11)times10^{3}$ s, which is one of the key parameters for the frequency standard based on $^{229}$Th.
381 - Gy. Gyurky , Z. Halasz , G.G. Kiss 2019
The literature half-life value of 65Ga is based on only one experiment carried out more than 60 years ago and it has a relatively large uncertainty. In the present work this half-life is determined based on the counting of the gamma-rays following th e beta-decay of 65Ga. Our new recommended half-life is 15.133 +- 0.028 min which is in agreement with the literature value but almost one order of magnitude more precise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا