ترغب بنشر مسار تعليمي؟ اضغط هنا

Object Recognition with and without Objects

86   0   0.0 ( 0 )
 نشر من قبل Zhuotun Zhu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While recent deep neural networks have achieved a promising performance on object recognition, they rely implicitly on the visual contents of the whole image. In this paper, we train deep neural net- works on the foreground (object) and background (context) regions of images respectively. Consider- ing human recognition in the same situations, net- works trained on the pure background without ob- jects achieves highly reasonable recognition performance that beats humans by a large margin if only given context. However, humans still outperform networks with pure object available, which indicates networks and human beings have different mechanisms in understanding an image. Furthermore, we straightforwardly combine multiple trained networks to explore different visual cues learned by different networks. Experiments show that useful visual hints can be explicitly learned separately and then combined to achieve higher performance, which verifies the advantages of the proposed framework.

قيم البحث

اقرأ أيضاً

Scalable training data generation is a critical problem in deep learning. We propose PennSyn2Real - a photo-realistic synthetic dataset consisting of more than 100,000 4K images of more than 20 types of micro aerial vehicles (MAVs). The dataset can b e used to generate arbitrary numbers of training images for high-level computer vision tasks such as MAV detection and classification. Our data generation framework bootstraps chroma-keying, a mature cinematography technique with a motion tracking system, providing artifact-free and curated annotated images where object orientations and lighting are controlled. This framework is easy to set up and can be applied to a broad range of objects, reducing the gap between synthetic and real-world data. We show that synthetic data generated using this framework can be directly used to train CNN models for common object recognition tasks such as detection and segmentation. We demonstrate competitive performance in comparison with training using only real images. Furthermore, bootstrapping the generated synthetic data in few-shot learning can significantly improve the overall performance, reducing the number of required training data samples to achieve the desired accuracy.
This manuscript introduces the problem of prominent object detection and recognition inspired by the fact that human seems to priorities perception of scene elements. The problem deals with finding the most important region of interest, segmenting th e relevant item/object in that area, and assigning it an object class label. In other words, we are solving the three problems of saliency modeling, saliency detection, and object recognition under one umbrella. The motivation behind such a problem formulation is (1) the benefits to the knowledge representation-based vision pipelines, and (2) the potential improvements in emulating bio-inspired vision systems by solving these three problems together. We are foreseeing extending this problem formulation to fully semantically segmented scenes with instance object priority for high-level inferences in various applications including assistive vision. Along with a new problem definition, we also propose a method to achieve such a task. The proposed model predicts the most important area in the image, segments the associated objects, and labels them. The proposed problem and method are evaluated against human fixations, annotated segmentation masks, and object class categories. We define a chance level for each of the evaluation criterion to compare the proposed algorithm with. Despite the good performance of the proposed baseline, the overall evaluations indicate that the problem of prominent object detection and recognition is a challenging task that is still worth investigating further.
This paper investigates how to realize better and more efficient embedding learning to tackle the semi-supervised video object segmentation under challenging multi-object scenarios. The state-of-the-art methods learn to decode features with a single positive object and thus have to match and segment each target separately under multi-object scenarios, consuming multiple times computing resources. To solve the problem, we propose an Associating Objects with Transformers (AOT) approach to match and decode multiple objects uniformly. In detail, AOT employs an identification mechanism to associate multiple targets into the same high-dimensional embedding space. Thus, we can simultaneously process the matching and segmentation decoding of multiple objects as efficiently as processing a single object. For sufficiently modeling multi-object association, a Long Short-Term Transformer is designed for constructing hierarchical matching and propagation. We conduct extensive experiments on both multi-object and single-object benchmarks to examine AOT variant networks with different complexities. Particularly, our AOT-L outperforms all the state-of-the-art competitors on three popular benchmarks, i.e., YouTube-VOS (83.7% J&F), DAVIS 2017 (83.0%), and DAVIS 2016 (91.0%), while keeping more than 3X faster multi-object run-time. Meanwhile, our AOT-T can maintain real-time multi-object speed on the above benchmarks. We ranked 1st in the 3rd Large-scale Video Object Segmentation Challenge. The code will be publicly available at https://github.com/z-x-yang/AOT.
We propose a traffic danger recognition model that works with arbitrary traffic surveillance cameras to identify and predict car crashes. There are too many cameras to monitor manually. Therefore, we developed a model to predict and identify car cras hes from surveillance cameras based on a 3D reconstruction of the road plane and prediction of trajectories. For normal traffic, it supports real-time proactive safety checks of speeds and distances between vehicles to provide insights about possible high-risk areas. We achieve good prediction and recognition of car crashes without using any labeled training data of crashes. Experiments on the BrnoCompSpeed dataset show that our model can accurately monitor the road, with mean errors of 1.80% for distance measurement, 2.77 km/h for speed measurement, 0.24 m for car position prediction, and 2.53 km/h for speed prediction.
In this paper, we study a new representation-learning task, which we termed as disassembling object representations. Given an image featuring multiple objects, the goal of disassembling is to acquire a latent representation, of which each part corres ponds to one category of objects. Disassembling thus finds its application in a wide domain such as image editing and few- or zero-shot learning, as it enables category-specific modularity in the learned representations. To this end, we propose an unsupervised approach to achieving disassembling, named Unsupervised Disassembling Object Representation (UDOR). UDOR follows a double auto-encoder architecture, in which a fuzzy classification and an object-removing operation are imposed. The fuzzy classification constrains each part of the latent representation to encode features of up to one object category, while the object-removing, combined with a generative adversarial network, enforces the modularity of the representations and integrity of the reconstructed image. Furthermore, we devise two metrics to respectively measure the modularity of disassembled representations and the visual integrity of reconstructed images. Experimental results demonstrate that the proposed UDOR, despited unsupervised, achieves truly encouraging results on par with those of supervised methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا