ﻻ يوجد ملخص باللغة العربية
We present some of the latest results from our numerical investigations of N=4 supersymmetric Yang--Mills theory formulated on a space-time lattice. Based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, we recently developed an improved lattice action that is now being employed in large-scale calculations. Here we update our studies of the static potential using this new action, also applying tree-level lattice perturbation theory to improve the analysis of the potential itself. Considering relatively weak couplings, we obtain results for the Coulomb coefficient that are consistent with continuum perturbation theory.
Non-perturbative investigations of $mathcal N = 4$ supersymmetric Yang--Mills theory formulated on a space-time lattice have advanced rapidly in recent years. Large-scale numerical calculations are currently being carried out based on a construction
For all types of N=4 anti-de Sitter (AdS) supersymmetry in three dimensions, we construct manifestly supersymmetric actions for Abelian vector multiplets and explain how to extend the construction to the non-Abelian case. Manifestly N=4 supersymmetri
We calculate the resummed perturbative free energy of ${cal N}=4$ supersymmetric Yang-Mills in four spacetime dimensions ($text{SYM}_{4,4}$) through second order in the t Hooft coupling $lambda$ at finite temperature and zero chemical potential. Our
We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry a
Owing to confinement, the fundamental particles of N=1 Supersymmetric Yang-Mills (SYM) theory, gluons and gluinos, appear only in colourless bound states at zero temperature. Compactifying the Euclidean time dimension with periodic boundary condition