ﻻ يوجد ملخص باللغة العربية
The aim of this work is the application of the Meshfree methods for solving systems of stiff ordinary differential equations. These methods are based on the Moving least squares (MLS), generalized moving least squares (GMLS) approximation and Modified Moving least squares (MMLS) method. GMLS makes a considerable reduction in the cost of numerical methods. In fact, GMLS method is effect operator on the basis polynomial rather than the complicated MLS shape functions. Besides that the modified MMLS approximation method avoids undue a singular moment matrix. This allows the base functions to be of order greater than two with the same size of the support domain as the linear base functions. We also show the estimation of the error propagation obtained of the numerical solution of the systems of stiff ordinary differential equation. Some examples are provided to show that the GMLS and MMLS methods are more reliable (accurate) than classic MLS method.Finally, the (our) proposed methods are validated by solving ZIKV model which is a system of ODEs.
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-condition
Recently, collocation based radial basis function (RBF) partition of unity methods (PUM) for solving partial differential equations have been formulated and investigated numerically and theoretically. When combined with stable evaluation methods such
Let $S(A)$ denote the orbit of a complex or real matrix $A$ under a certain equivalence relation such as unitary similarity, unitary equivalence, unitary congruences etc. Efficient gradient-flow algorithms are constructed to determine the best approx
We present a novel greedy Gauss-Seidel method for solving large linear least squares problem. This method improves the greedy randomized coordinate descent (GRCD) method proposed recently by Bai and Wu [Bai ZZ, and Wu WT. On greedy randomized coordin
In order to avoid the curse of dimensionality, frequently encountered in Big Data analysis, there was a vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as m