ترغب بنشر مسار تعليمي؟ اضغط هنا

Unintegrated Double Parton Distributions - a Summary

210   0   0.0 ( 0 )
 نشر من قبل Krzysztof Golec-Biernat
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present main elements of the construction of unintegrated double parton distribution functions which depend on transverse momenta of partons. We follow the method proposed by Kimber, Martin and Ryskin for a construction of unintegrated single parton distributions from the standard parton distribution functions.



قيم البحث

اقرأ أيضاً

We present the construction of unintegrated double parton distribution functions which include dependence on transverse momenta of partons. We extend the formulation which was used to obtain the single unintegrated parton distributions from the stand ard, integrated parton distribution functions. Starting from the homogeneous part of the evolution equations for the integrated double parton distributions, we construct the unintegrated double parton distributions as the convolutions of the integrated double distributions and the splitting functions, multiplied by the Sudakov form factors. We show that there exist three domains of external hard scales which require three distinct forms of the unintegrated double distributions. The additional transverse momentum dependence which arises through the Sudakov form factors leads to non-trivial correlations in the parton momenta. We also discuss the non-homogeneous contribution to the unintegrated double parton distributions, which arises due to the splitting of a single parton into daughter partons with high transverse momenta. We analyze two cases, the unfolding of the transverse momenta dependence from the last step of the evolution of two partons, and the case where the transverse momenta are generated directly from the single parton splitting.
228 - M. Dittmar , S. Forte , A. Glazov 2005
We provide an assessment of the impact of parton distributions on the determination of LHC processes, and of the accuracy with which parton distributions (PDFs) can be extracted from data, in particular from current and forthcoming HERA experiments. We give an overview of reference LHC processes and their associated PDF uncertainties, and study in detail W and Z production at the LHC. We discuss the precision which may be obtained from the analysis of existing HERA data, tests of consistency of HERA data from different experiments, and the combination of these data. We determine further improvements on PDFs which may be obtained from future HERA data (including measurements of $F_L$), and from combining present and future HERA data with present and future hadron collider data. We review the current status of knowledge of higher (NNLO) QCD corrections to perturbative evolution and deep-inelastic scattering, and provide reference results for their impact on parton evolution, and we briefly examine non-perturbative models for parton distributions. We discuss the state-of-the art in global parton fits, we assess the impact on them of various kinds of data and of theoretical corrections, by providing benchmarks of Alekhin and MRST parton distributions and a CTEQ analysis of parton fit stability, and we briefly presents proposals for alternative approaches to parton fitting. We summarize the status of large and small x resummation, by providing estimates of the impact of large x resummation on parton fits, and a comparison of different approaches to small x resummation, for which we also discuss numerical techniques.
We present two equivalent consistency checks of the momentum sum rule for double parton distributions and show the importance of the inclusion of the so-called inhomogeneous term in order to preserve correct longitudinal momentum correlations. We fur ther discuss in some detail the kinematics of the splitting at the basis of the inhomogeneous term and update the double parton distributions evolution equations at different virtualities.
We show how the double parton distributions may be obtained consistently from the many-body light-cone wave functions. We illustrate the method on the example of the pion with two Fock components. The procedure, by construction, satisfies the Gaunt-S tirling sum rules. The resulting single parton distributions of valence quarks and gluons are consistent with a phenomenological parametrization at a low scale.
Double parton distribution functions (DPDFs) are used in the QCD description of double parton scattering. The DPDFs evolve with hard scales through relatively new QCD evolution equations which obey nontrivial momentum and valence quark number sum rul es. Based on the constructed numerical program, we present results on the QCD evolution of the DPDFs. In particular, we discuss the problem how to specify initial conditions for the evolution equations which exactly fulfill the sum rules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا