ﻻ يوجد ملخص باللغة العربية
The importance of Einsteins geometrization philosophy, as an alternative to the least action principle, in constructing general relativity (GR), is illuminated. The role of differential identities in this philosophy is clarified. The use of Bianchi identity to write the field equations of GR is shown. Another similar identity in the absolute parallelism geometry is given. A more general differential identity in the parameterized absolute parallelism geometry is derived. Comparison and interrelationships between the above mentioned identities and their role in constructing field theories are discussed.
We construct stationary solutions to the Einstein-Maxwell-current system by using the Sasakian manifold for the three-dimensional space. Both the magnetic field and the electric current in the solution are specified by the contact form of the Sasakia
We analyze gravitationally localized states of multiple fermions with high angular momenta, in the formalism introduced by Finster, Smoller, and Yau [Phys Rev. D 59, 104020 (1999)]. We show that the resulting soliton-like wave functions can be natura
Recently, orthogonal recurrent neural networks (RNNs) have emerged as state-of-the-art models for learning long-term dependencies. This class of models mitigates the exploding and vanishing gradients problem by design. In this work, we employ tools a
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics
We investigate the intrinsic and extrinsic curvatures of certain hypersurfaces in the thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordstr{o}m-(A)de Sitter black hole (P