ترغب بنشر مسار تعليمي؟ اضغط هنا

Einstein Geometrization Philosophy and Differential Identities in PAP-Geometry

43   0   0.0 ( 0 )
 نشر من قبل Nabil Youssef L
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The importance of Einsteins geometrization philosophy, as an alternative to the least action principle, in constructing general relativity (GR), is illuminated. The role of differential identities in this philosophy is clarified. The use of Bianchi identity to write the field equations of GR is shown. Another similar identity in the absolute parallelism geometry is given. A more general differential identity in the parameterized absolute parallelism geometry is derived. Comparison and interrelationships between the above mentioned identities and their role in constructing field theories are discussed.



قيم البحث

اقرأ أيضاً

We construct stationary solutions to the Einstein-Maxwell-current system by using the Sasakian manifold for the three-dimensional space. Both the magnetic field and the electric current in the solution are specified by the contact form of the Sasakia n manifold. The solutions contain an arbitrary function that describes inhomogeneity of the number density of the charged particles, and the function determines the curvature of the space.
We analyze gravitationally localized states of multiple fermions with high angular momenta, in the formalism introduced by Finster, Smoller, and Yau [Phys Rev. D 59, 104020 (1999)]. We show that the resulting soliton-like wave functions can be natura lly interpreted in terms of a form of self-trapping, where the fermions become localized on shells the locations of which correspond to those of `bulges in the optical geometry created by their own energy density.
Recently, orthogonal recurrent neural networks (RNNs) have emerged as state-of-the-art models for learning long-term dependencies. This class of models mitigates the exploding and vanishing gradients problem by design. In this work, we employ tools a nd insights from differential geometry to offer a novel perspective on orthogonal RNNs. We show that orthogonal RNNs may be viewed as optimizing in the space of divergence-free vector fields. Specifically, based on a well-known result in differential geometry that relates vector fields and linear operators, we prove that every divergence-free vector field is related to a skew-symmetric matrix. Motivated by this observation, we study a new recurrent model, which spans the entire space of vector fields. Our method parameterizes vector fields via the directional derivatives of scalar functions. This requires the construction of latent inner product, gradient, and divergence operators. In comparison to state-of-the-art orthogonal RNNs, our approach achieves comparable or better results on a variety of benchmark tasks.
117 - Hugo Parlier 2020
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics and orthogeodesics to boundary lengths or number of cusps. These include, as particular cases, identities due to Basmajian, to McShane and to Mirzakhani and Tan-Wong-Zhang. In stark contrast to previous identities, the identities presented here include the lengths taken among all closed geodesics.
We investigate the intrinsic and extrinsic curvatures of certain hypersurfaces in the thermodynamic geometry of a physical system and show that they contain useful thermodynamic information. For an anti-Reissner-Nordstr{o}m-(A)de Sitter black hole (P hantom), the extrinsic curvature of a constant $Q$ hypersurface has the same sign as the heat capacity around the phase transition points. For a Kerr-Newmann-AdS (KN-AdS) black hole, the extrinsic curvature of $Q to 0$ hypersurface (Kerr black hole) or $J to 0$ hypersurface (RN black black hole) has the same sign as the heat capacity around the phase transition points. The extrinsic curvature also diverges at the phase transition points. The intrinsic curvature of the hypersurfaces diverges at the critical points but has no information about the sign of the heat capacity. Our study explains the consistent relationship holding between the thermodynamic geometry of the KN-AdS black holes and those of the RN and Kerr ones cite{ref1}. This approach can be easily generalized to an arbitrary thermodynamic system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا