ترغب بنشر مسار تعليمي؟ اضغط هنا

Hotelling-Downs Model with Limited Attraction

91   0   0.0 ( 0 )
 نشر من قبل Weiran Shen
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study variations of the standard Hotelling-Downs model of spatial competition, where each agent attracts the clients in a restricted neighborhood, each client randomly picks one attractive agent for service. Two utility functions for agents are considered: support utility and winner utility. We generalize the results by Feldman et al. to the case where the clients are distributed arbitrarily. In the support utility setting, we show that a pure Nash equilibrium always exists by formulating the game as a potential game. In the winner utility setting, we show that there exists a Nash equilibrium in two cases: when there are at most 3 agents and when the size of attraction area is at least half of the entire space. We also consider the price of anarchy and the fairness of equilibria and give tight bounds on these criteria.

قيم البحث

اقرأ أيضاً

We study the problem of repeatedly auctioning off an item to one of $k$ bidders where: a) bidders have a per-round individual rationality constraint, b) bidders may leave the mechanism at any point, and c) the bidders valuations are adversarially cho sen (the prior-free setting). Without these constraints, the auctioneer can run a second-price auction to sell the business and receive the second highest total value for the entire stream of items. We show that under these constraints, the auctioneer can attain a constant fraction of the sell the business benchmark, but no more than $2/e$ of this benchmark. In the course of doing so, we design mechanisms for a single bidder problem of independent interest: how should you repeatedly sell an item to a (per-round IR) buyer with adversarial valuations if you know their total value over all rounds is $V$ but not how their value changes over time? We demonstrate a mechanism that achieves revenue $V/e$ and show that this is tight.
We present the classical Hotelling model we want to quantize, and investigate the quantum consequences of the game. Our results demonstrate that the quantum game give higher profit for both players, and that with the quantum entanglement parameter in creasing, the quantum benefit over the classical increases too. Then we extend the model to a more general form, and quantum advantage keeps unchanged.
We study the basin of attraction of static extremal black holes, in the concrete setting of the STU model. By finding a connection to a decoupled Toda-like system and solving it exactly, we find a simple way to characterize the attraction basin via c ompeting behaviors of certain parameters. The boundaries of attraction arise in the various limits where these parameters degenerate to zero. We find that these boundaries are generalizations of the recently introduced (extremal) subtracted geometry: the warp factors still exhibit asymptotic integer power law behaviors, but the powers can be different from one. As we cross over one of these boundaries (generalized subttractors), the solutions turn unstable and start blowing up at finite radius and lose their asymptotic region. Our results are fully analytic, but we also solve a simpler theory where the attraction basin is lower dimensional and easy to visualize, and present a simple picture that illustrates many of the basic ideas.
We consider the problem of dividing limited resources between a set of agents arriving sequentially with unknown (stochastic) utilities. Our goal is to find a fair allocation - one that is simultaneously Pareto-efficient and envy-free. When all utili ties are known upfront, the above desiderata are simultaneously achievable (and efficiently computable) for a large class of utility functions. In a sequential setting, however, no policy can guarantee these desiderata simultaneously for all possible utility realizations. A natural online fair allocation objective is to minimize the deviation of each agents final allocation from their fair allocation in hindsight. This translates into simultaneous guarantees for both Pareto-efficiency and envy-freeness. However, the resulting dynamic program has state-space which is exponential in the number of agents. We propose a simple policy, HopeOnline, that instead aims to `match the ex-post fair allocation vector using the current available resources and `predicted histogram of future utilities. We demonstrate the effectiveness of our policy compared to other heurstics on a dataset inspired by mobile food-bank allocations.
In many settings, an effective way of evaluating objects of interest is to collect evaluations from dispersed individuals and to aggregate these evaluations together. Some examples are categorizing online content and evaluating student assignments vi a peer grading. For this data science problem, one challenge is to motivate participants to conduct such evaluations carefully and to report them honestly, particularly when doing so is costly. Existing approaches, notably peer-prediction mechanisms, can incentivize truth telling in equilibrium. However, they also give rise to equilibria in which agents do not pay the costs required to evaluate accurately, and hence fail to elicit useful information. We show that this problem is unavoidable whenever agents are able to coordinate using low-cost signals about the items being evaluated (e.g., text labels or pictures). We then consider ways of circumventing this problem by comparing agents reports to ground truth, which is available in practice when there exist trusted evaluators---such as teaching assistants in the peer grading scenario---who can perform a limited number of unbiased (but noisy) evaluations. Of course, when such ground truth is available, a simpler approach is also possible: rewarding each agent based on agreement with ground truth with some probability, and unconditionally rewarding the agent otherwise. Surprisingly, we show that the simpler mechanism achieves stronger incentive guarantees given less access to ground truth than a large set of peer-prediction mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا