ترغب بنشر مسار تعليمي؟ اضغط هنا

A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves

70   0   0.0 ( 0 )
 نشر من قبل Jose Miguel No
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that simple Two Higgs Doublet models still provide a viable explanation for the matter-antimatter asymmetry of the Universe via electroweak baryogenesis, even after taking into account the recent order-of-magnitude improvement on the electron-EDM experimental bound by the ACME Collaboration. Moreover we show that, in the region of parameter space where baryogenesis is possible, the gravitational wave spectrum generated at the end of the electroweak phase transition is within the sensitivity reach of the future space-based interferometer LISA.



قيم البحث

اقرأ أيضاً

We study the induced primordial gravitational waves (GW) coming from the effect of scalar perturbation on the tensor perturbation at the second order of cosmological perturbation theory. We use the evolution of the standard model degrees of freedom w ith respect to temperature in the early Universe to compute the induced gravitational waves bakcground. Our result shows that the spectrum of the induced GW is affected differently by the standard model degrees of freedom than the GW coming from first order tensor perturbation. This phenomenon is due to the presence of scalar perturbations as a source for tensor perturbations and it is effective around the quark gluon deconfinement and electroweak transition. In case of considering a scalar spectral index larger than one at small scales or a non-Gaussian curvature power spectrum this effect can be observed by gravitational wave observatories.
We study nanohertz gravitational waves relevant to pulsar timing array experiments from quantum fluctuations in the early universe with null energy condition (NEC) violation. The NEC violation admits accelerated expansion with the scale factor $aprop to (-t)^{-p}$ ($p>0$), which gives the tensor spectral index $n_t=2/(p+1)>0$. To evade the constraint from Big Bang nucleosynthesis (BBN), we connect the NEC-violating phase to a subsequent short slow-roll inflationary phase which ends with standard reheating, and thereby reduce the high frequency part of the spectrum. An explicit model is constructed within the cubic Horndeski theory which allows for stable violation of the NEC. We present numerical examples of the background evolution having the different maximal Hubble parameters (which determine the peak amplitude of gravitational waves), the different inflationary Hubble parameters (which determine the amplitudes of high frequency gravitational waves), and different durations of the inflationary phase (which essentially determine the peak frequency of the spectrum). We display the spectra with $n_t=0.8$, $0.9$, and $0.95$ for $flesssim 1/{rm yr}$, which are consistent with the recent NANOGrav result. We also check that they do not contradict the BBN constraint. We discuss how the nearly scale-invariant spectrum of curvature perturbations is produced in the NEC-violating phase.
Recently we presented the upgrade of our code BSMPT for the calculation of the electroweak phase transition (EWPT) to BSMPT v2 which now includes the computation of the baryon asymmetry of the universe (BAU) in the CP-violating 2-Higgs-Doublet Model (C2HDM). In this paper we use {tt BSMPT v2} to investigate the size of the BAU that is obtained in the C2HDM with the two implemented approaches FH and VIA to derive the transport equations, by taking into account all relevant theoretical and experimental constraints. We identify similarities and differences in the results computed with the two methods. In particular, we analyse the dependence of the obtained BAU on the parameters relevant for successful baryogenesis. Our investigations allow us to pinpoint future directions for improvements both in the computation of the BAU and in possible avenues taken for model building.
A fundamental property of the Standard Model is that the Higgs potential becomes unstable at large values of the Higgs field. For the current central values of the Higgs and top masses, the instability scale is about $10^{11}$ GeV and therefore not a ccessible by colliders. We show that a possible signature of the Standard Model Higgs instability is the production of gravitational waves sourced by Higgs fluctuations generated during inflation. We fully characterise the two-point correlator of such gravitational waves by computing its amplitude, the frequency at peak, the spectral index, as well as their three-point correlators for various polarisations. We show that, depending on the Higgs and top masses, either LISA or the Einstein Telescope and Advanced-Ligo, could detect such stochastic background of gravitational waves. In this sense, collider and gravitational wave physics can provide fundamental and complementary informations. Furthermore, the consistency relation among the three- and the two-point correlators could provide an efficient tool to ascribe the detected gravitational waves to the Standard Model itself. Since the mechanism described in this paper might also be responsible for the generation of dark matter under the form of primordial black holes, this latter hypothesis may find its confirmation through the detection of gravitational waves.
Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the d ark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا