ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposed experiment to test fundamentally binary theories

57   0   0.0 ( 0 )
 نشر من قبل Matthias Kleinmann
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n, quantum n-ary correlations are not fundamentally (n-1)-ary. For that, we introduce a family of inequalities that hold for fundamentally (n-1)-ary theories but are violated by quantum n-ary correlations.

قيم البحث

اقرأ أيضاً

390 - Rui Chao , Ben W. Reichardt 2017
A Bell test separates quantum mechanics from a classical, local realist theory of physics. However, a Bell test cannot separate quantum physics from all classical theories. Classical devices supplemented with non-signaling correlations, e.g., the Pop escu-Rohrlich nonlocal box, can pass a Bell test with probability at least as high as any quantum devices can. After all, quantum entanglement does not allow for signaling faster than the speed of light, so in a sense is a weaker special case of non-signaling correlations. It could be that underneath quantum mechanics is a deeper non-signaling theory. We present a test to separate quantum theory from powerful non-signaling theories. The test extends the CHSH game to involve three space-like separated devices. Quantum devices sharing a three-qubit GHZ state can pass the test with probability 5.1% higher than classical devices sharing arbitrary non-signaling correlations between pairs. More generally, we give a test that k space-like separated quantum devices can pass with higher probability than classical devices sharing arbitrary (k-1)-local non-signaling correlations.
In an effort to challenge the Copenhagen interpretation of quantum mechanics, Karl Popper proposed an experiment involving spatially separated entangled particles. In this experiment, one of the particles passes through a very narrow slit, and thereb y its position becomes well-defined. This particle therefore diffracts into a large divergence angle; this effect can be understood as a consequence of the Heisenberg uncertainty principle. Popper further argued that its entangled partner would become comparably localized in position, and that, according to his understanding of the Copenhagen interpretation of quantum mechanics, the qo{mere knowledge} of the position of this particle would cause it also to diffract into a large divergence angle. Popper recognized that such behaviour could violate the principle of causality in that the slit could be removed and the partner particle would be expected to respond instantaneously. Popper thus concluded that it was most likely the case that in an actual experiment the partner photon would not undergo increased diffractive spreading and thus that the Copenhagen interpretation is incorrect. Here, we report and analyze the results of an implementation of Poppers proposal. We find that the partner beam does not undergo increased diffractive spreading. Our work resolves many of the open questions involving Poppers proposal, and it provides further insight into the nature of entanglement and its relation to the uncertainty principle of correlated particles.
We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilat ion) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atoms Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.
Negative probability values have been widely employed as an indicator of the nonclassicality of quantum systems. Known as a quasiprobability distribution, they are regarded as a useful tool that provides significant insight into the underlying fundam entals of quantum theory when compared to the classical statistics. However, in this approach, an operational interpretation of these negative values with respect to the definition of probability---the relative frequency of occurred event---is missing. An alternative approach is therefore considered where the quasiprobability operationally reveals the negativity of measured quantities. We here present an experimental realization of the operational quasiprobability, which consists of sequential measurements in time. To this end, we implement two sets of polarization measurements of single photons. We find that the measured negativity can be interpreted in the context of selecting measurements, and it reflects the nonclassical nature of photons. Our results suggest a new operational way to unravel the nonclassicality of photons in the context of measurement selection.
Here we propose an experiment in Linear Optical Quantum Computing (LOQC) using the framework first developed by Knill, Laflamme, and Milburn. This experiment will test the ideas of the authors previous work on imperfect LOQC gates using number-resolv ing photon detectors. We suggest a relatively simple physical apparatus capable of producing CZ gates with controllable fidelity less than 1 and success rates higher than the current theoretical maximum (S=2/27) for perfect fidelity. These experimental setups are within the reach of many experimental groups and would provide an interesting experiment in photonic quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا