ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable Photonic Radiofrequency Filter with An Ultra-high Out-Of-Band Rejection

188   0   0.0 ( 0 )
 نشر من قبل Xihua Zou
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As radiofrequency filtering plays a vital role in electromagnetic devices and systems, recently photonic techniques have been intensively studied to implement radiofrequency filters to harness wide frequency coverage, large instantaneous bandwidth, low frequency-dependent loss, flexible tunability and strong immunity to electromagnetic interference. However, one crucial challenge facing the photonic radiofrequency filter (PRF) is the less impressive out-of-band rejection. Here, to the best of our knowledge, we demonstrate a tunable PRF with a record out-of-band rejection of 80 dB, which is 3 dB higher than the maximum value (~77 dB) reported so far, when incorporating highly selective polarization control and large narrow-band amplification enabled by stimulated Brillouin scattering effect. In particular, this record rejection is arduous to be achieved for a narrow passband (e.g., a few megahertz) and a high finesse in a PRF. Moreover, the proposed PRF is an active one capable of providing negligible insertion loss and even signal gain. Tunable central frequency ranging from 2.1 to 6.1 GHz is also demonstrated. The proposed PRF will provide an ultra-high noise or clutter suppression for harsh electromagnetic scenarios, particularly when room-temperature implementation and remote distribution are needed.



قيم البحث

اقرأ أيضاً

The ever-increasing demand for high speed and large bandwidth has made photonic systems a leading candidate for the next generation of telecommunication and radar technologies. The photonic platform enables high performance while maintaining a small footprint and provides a natural interface with fiber optics for signal transmission. However, producing sharp, narrow-band filters that are competitive with RF components has remained challenging. In this paper, we demonstrate all-silicon RF-photonic multi-pole filters with $sim100times$ higher spectral resolution than previously possible in silicon photonics. This enhanced performance is achieved utilizing engineered Brillouin interactions to access long-lived phonons, greatly extending the available coherence times in silicon. This Brillouin-based optomechanical system enables ultra-narrow (3.5 MHz) multi-pole response that can be tuned over a wide ($sim10$ GHz) spectral band. We accomplish this in an all-silicon optomechanical waveguide system, using CMOS compatible fabrication techniques. In addition to bringing greatly enhanced performance to silicon photonics, we demonstrate reliability and robustness, necessary to transition silicon-based optomechanical technologies from the scientific bench-top to high-impact field-deployable technologies.
We report a simple technique in microwave photonic (MWP) signal processing that allows the use of an optical filter with a shallow notch to exhibit a microwave notch filter with anomalously high rejection level. We implement this technique using a lo w-loss, tunable Si3N4 optical ring resonator as the optical filter, and achieved an MWP notch filter with an ultra-high peak rejection > 60 dB, a tunable high resolution bandwidth of 247-840 MHz, and notch frequency tuning of 2-8 GHz. To our knowledge, this is a record combined peak rejection and resolution for an integrated MWP filter.
An add-drop filter (ADF) fabricated using a whispering gallery mode resonator has different crosstalks for add and drop functions due to non-zero intrinsic losses of the resonator. Here, we show that introducing gain medium in the resonator and optic ally pumping it below the lasing threshold not only allows loss compensation to achieve similar and lower crosstalks but also tunability in bandwidth and add-drop efficiency. For an active ADF fabricated using an erbium-ytterbium co-doped microsphere, we achieved 24-fold enhancement in the intrinsic quality factor, 3.5-fold increase in drop efficiency, bandwidth tunability of 35 MHz and a crosstalk of only 2%.
We demonstrate photonic crystal nanobeam cavities that support both TE- and TM-polarized modes, each with a Quality factor greater than one million and a mode volume on the order of the cubic wavelength. We show that these orthogonally polarized mode s have a tunable frequency separation and a high nonlinear spatial overlap. We expect these cavities to have a variety of applications in resonance-enhanced nonlinear optics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا