ﻻ يوجد ملخص باللغة العربية
We consider Chern-Simons theory for gauge group $G$ at level $k$ on 3-manifolds $M_n$ with boundary consisting of $n$ topologically linked tori. The Euclidean path integral on $M_n$ defines a quantum state on the boundary, in the $n$-fold tensor product of the torus Hilbert space. We focus on the case where $M_n$ is the link-complement of some $n$-component link inside the three-sphere $S^3$. The entanglement entropies of the resulting states define framing-independent link invariants which are sensitive to the topology of the chosen link. For the Abelian theory at level $k$ ($G= U(1)_k$) we give a general formula for the entanglement entropy associated to an arbitrary $(m|n-m)$ partition of a generic $n$-component link into sub-links. The formula involves the number of solutions to certain Diophantine equations with coefficients related to the Gauss linking numbers (mod $k$) between the two sublinks. This formula connects simple concepts in quantum information theory, knot theory, and number theory, and shows that entanglement entropy between sublinks vanishes if and only if they have zero Gauss linking (mod $k$). For $G = SU(2)_k$, we study various two and three component links. We show that the 2-component Hopf link is maximally entangled, and hence analogous to a Bell pair, and that the Whitehead link, which has zero Gauss linking, nevertheless has entanglement entropy. Finally, we show that the Borromean rings have a W-like entanglement structure (i.e., tracing out one torus does not lead to a separable state), and give examples of other 3-component links which have GHZ-like entanglement (i.e., tracing out one torus does lead to a separable state).
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbati
We study the entanglement for a state on linked torus boundaries in $3d$ Chern-Simons theory with a generic gauge group and present the asymptotic bounds of Renyi entropy at two different limits: (i) large Chern-Simons coupling $k$, and (ii) large ra
We discuss ensemble averages of two-dimensional conformal field theories associated with an arbitrary indefinite lattice with integral quadratic form $Q$. We provide evidence that the holographic dual after the ensemble average is the three-dimension
We study resurgence properties of partition function of SU(2) Chern-Simons theory (WRT invariant) on closed three-manifolds. We check explicitly that in various examples Borel transforms of asymptotic expansions posses expected analytic properties. I
The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons