ﻻ يوجد ملخص باللغة العربية
We present the theory of time-dependent point transformations to find independent dynamical normal modes for 2D systems subjected to time-dependent control in the limit of small oscillations. The condition that determines if the independent modes can indeed be defined is identified, and a geometrical analogy is put forward. The results explain and unify recent work to design fast operations on trapped ions, needed to implement a scalable quantum-information architecture: transport, expansions, and the separation of two ions, two-ion phase gates, as well as the rotation of an anisotropic trap for an ion are treated and shown to be analogous to a mechanical system of two masses connected by springs with time dependent stiffness.
The validity of optimized dynamical decoupling (DD) is extended to analytically time dependent Hamiltonians. As long as an expansion in time is possible the time dependence of the initial Hamiltonian does not affect the efficiency of optimized dynami
Given a generic time-dependent many-body quantum state, we determine the associated parent Hamiltonian. This procedure may require, in general, interactions of any sort. Enforcing the requirement of a fixed set of engineerable Hamiltonians, we find t
We formulate a set of conditions under which dynamics of a time-dependent quantum Hamiltonian are integrable. The main requirement is the existence of a nonabelian gauge field with zero curvature in the space of system parameters. Known solvable mult
In this work we address systems described by time-dependent non-Hermitian Hamiltonians under time-dependent Dyson maps. We shown that when starting from a given time-dependent non-Hermitian Hamiltonian which is not itself an observable, an infinite c
The evolution speed in projective Hilbert space is considered for Hermitian Hamiltonians and for non-Hermitian (NH) ones. Based on the Hilbert-Schmidt norm and the spectral norm of a Hamiltonian, resource-related upper bounds on the evolution speed a