ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis, Optical, and Magnetic Properties of Ba$_2$Ni$_3$F$_{10}$ Nanowires

170   0   0.0 ( 0 )
 نشر من قبل Shuai Dong
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A low temperature hydrothermal route has been developed, and pure phase Ba$_2$Ni$_3$F$_{10}$ nanowires have been successfully prepared under the optimized conditions. Under the 325 nm excitation, the Ba$_2$Ni$_3$F$_{10}$ nanowires exhibit three emission bands with peak positions locating at 360 nm, 530 nm, and 700 nm, respectively. Combined with the first-principles calculations, the photoluminescence property can be explained by the electron transitions between the t2g and eg orbitals. Clear hysteresis loops observed below the temperature of 60 K demonstrates the weak ferromagnetism in Ba$_2$Ni$_3$F$_{10}$ nanowires, which has been attributed to the surface strain of nanowires. Exchange bias with blocking temperature of 55 K has been observed, which originates from the magnetization pinning under the cooling field due to antiferromagnetic core/weak ferromagnetic shell structure of Ba2Ni3F10 nanowires.



قيم البحث

اقرأ أيضاً

119 - Valery I. Rupasov 2009
In the framework of four-band envelope-function formalism, developed earlier for spherical semiconductor nanocrystals, we study the electronic structure and optical properties of quantum-confined lead-salt (PbSe and PbS) nanowires (NWs) with a strong coupling between the conduction and the valence bands. We derive spatial quantization equations, and calculate numerically energy levels of spatially quantized states of a transverse electron motion in the plane perpendicular to the NW axis, and electronic subbands developed due to a free longitudinal motion along the NW axis. Using explicit expressions for eigenfunctions of the electronic states, we also derive analytical expressions for matrix elements of optical transitions and study selection rules for interband absorption. Next we study a two-particle problem with a conventional long-range Coulomb interaction and an interparticle coupling via medium polarization. The obtained results show that due to a large magnitude of the high-frequency dielectric permittivity of PbSe material, and hence, a high dielectric NW/vacuum contrast, the effective coupling via medium polarization significantly exceeds the effective direct Coulomb coupling at all interparticle separations along the NW axis. Furthermore, the strong coupling via medium polarization results in a bound state of the longitudinal motion of the lowest-energy electron-hole pair (a longitudinal exciton), while fast transverse motions of charge carriers remain independent of each other.
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synth esis of high-quality MnBi2Te4 single crystals by solid-state reactions. The as-grown MnBi2Te4 single crystal exhibits a van der Waals layered structure, which is composed of septuple Te-Bi-Te-Mn-Te-Bi-Te sequences as determined by powder X-ray diffraction (PXRD) and high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The magnetic order below 25 K as a consequence of A-type antiferromagnetic interaction between Mn layers in the MnBi2Te4 crystal suggests the unique interplay between antiferromagnetism and topological quantum states. The transport measurements of MnBi2Te4 single crystals further confirm its magnetic transition. Moreover, the unstable surface of MnBi2Te4, which is found to be easily oxidized in air, deserves attention for onging research on few-layer samples. This study on the first AFM TI of MnBi2Te4 will guide the future research on other potential candidates in the MBixTey family (M = Ni, V, Ti, etc.).
Ab initio calculations using the local spin density approximation and also including the Hubbard $U$ have been performed for three low energy configurations of the interface between LaAlO$_3$ and TiO$_2$-anatase. Two types of interfaces have been con sidered: LaO/TiO$_2$ and AlO$_2$/TiO, the latter with Ti-termination and therefore a missing oxygen. A slab-geometry calculation was carried out and all the atoms were allowed to relax in the direction normal to the interface. In all the cases considered, the interfacial Ti atom acquires a local magnetic moment and its formal valence is less than +4. When there are oxygen vacancies, this valence decreases abruptly inside the anatase slab while in the LaO/TiO$_2$ interface the changes are more gradual.
Doping Bi$_2$Se$_3$ by magnetic ions represents an interesting problem since it may break the time reversal symmetry needed to maintain the topological insulator character. Mn dopants in Bi$_2$Se$_3$ represent one of the most studied examples here. H owever, there is a lot of open questions regarding their magnetic ordering. In the experimental literature different Curie temperatures or no ferromagnetic order at all are reported for comparable Mn concentrations. This suggests that magnetic ordering phenomena are complex and highly susceptible to different growth parameters, which are known to affect material defect concentrations. So far theory focused on Mn dopants in one possible position, and neglected relaxation effects as well as native defects. We have used ab initio methods to calculate the Bi$_2$Se$_3$ electronic structure influenced by magnetic Mn dopants, and exchange interactions between them. We have considered two possible Mn positions, the substitutional and interstitial one, and also native defects. We have found a sizable relaxation of atoms around Mn, which affects significantly magnetic interactions. Surprisingly, very strong interactions correspond to a specific position of Mn atoms separated by van der Waals gap. Based on the calculated data we performed spin dynamics simulations to examine systematically the resulting magnetic order for various defect contents. We have found under which conditions the experimentally measured Curie temperatures ${T_{rm{C}}}$ can be reproduced, noticing that interstitial Mn atoms appear to be important here. Our theory predicts the change of ${T_{rm{C}}}$ with a shift of Fermi level, which opens the way to tune the system magnetic properties by selective doping.
Small single crystals of Rb$_3$Ni$_2$(NO$_3$)$_7$ were obtained by crystallization from anhydrous nitric acid solution of rubidium nitrate and nickel nitrate hexahydrate. The basic elements of the crystal structure of this new compound are isolated s pin-1 two-leg ladders of Ni$^{2+}$-ions connected by (NO$_3$)$^-$ groups. The experimental data show the absence of long range magnetic order at T $geq 2$~K. LDA+U calculations and the detailed analysis of the experimental data, i.e. of the magnetic susceptibility, the specific heat in magnetic fields up to 9~T, the magnetization, and of the high-frequency electron spin resonance data, enable quantitative estimates of the relevant parameters of the $S=1$ ladders in Rb$_3$Ni$_2$(NO$_3$)$_7$ . The rung-coupling $J_1 = 10.5$~K, the leg-coupling $J_2=1.6$~K, and the uniaxial anisotropy $|A| = 179$~GHz are obtained. The scenario of spin liquid quantum ground state is further corroborated by quantum Monte Carlo simulations of the magnetic susceptibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا