ﻻ يوجد ملخص باللغة العربية
With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing IP-connected devices for home and small office networks that often suffer from flawed security designs and implementations. They also tend to lack mechanisms for firmware updates or patches that can help eliminate security vulnerabilities. Securing networks where the presence of such vulnerable devices is given, requires a brownfield approach: applying necessary protection measures within the network so that potentially vulnerable devices can coexist without endangering the security of other devices in the same network. In this paper, we present IOT SENTINEL, a system capable of automatically identifying the types of devices being connected to an IoT network and enabling enforcement of rules for constraining the communications of vulnerable devices so as to minimize damage resulting from their compromise. We show that IOT SENTINEL is effective in identifying device types and has minimal performance overhead.
Internet-of-Things (IoT) devices are known to be the source of many security problems, and as such, they would greatly benefit from automated management. This requires robustly identifying devices so that appropriate network security policies can be
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers due to the less secure nature of the devices. The widely adopted bring your own device (BYOD) policy which allows an employee to bring a
How do healthcare organizations (from small Practices to large HDOs) evaluate adherence to the cybersecurity and privacy protection of Medical Internet of Things (MIoT) used in clinical settings? This paper suggests an approach for such evaluation us
The various types of communication technologies and mobility features in Internet of Things (IoT) on the one hand enable fruitful and attractive applications, but on the other hand facilitates malware propagation, thereby raising new challenges on ha
Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Non-cryptographic Device Identification (NDI). However, learning components