ﻻ يوجد ملخص باللغة العربية
Precise measurements of the branching ratios for the $Ktopi ubar{ u}$ decays can provide unique constraints on CKM unitarity and, potentially, evidence for new physics. It is important to measure both decay modes, $K^+topi^+ ubar{ u}$ and $K_Ltopi^0 ubar{ u}$, since different new physics models affect the rates for each channel differently. We are investigating the feasibility of performing a measurement of BR($K_Ltopi^0 ubar{ u}$) using a high-energy secondary neutral beam at the CERN SPS in a successor experiment to NA62. The planned experiment would reuse some of the NA62 infrastructure, including possibly the NA48 liquid-krypton calorimeter. The mean momentum of $K_L$ mesons decaying in the fiducial volume is 70 GeV; the decay products are boosted forward, so that less demanding performance is required from the large-angle photon veto detectors. On the other hand, the layout poses particular challenges for the design of the small-angle vetoes, which must reject photons from $K_L$ decays escaping through the beam pipe amidst an intense background from soft photons and neutrons in the beam. We present some preliminary conclusions from our feasibility studies, summarizing the design challenges faced and the sensitivity obtainable for the measurement of BR($K_Ltopi^0 ubar{ u}$).
Precise measurements of the branching ratios for the flavor-changing neutral current decays $Ktopi ubar{ u}$ can provide unique constraints on CKM unitarity and, potentially, evidence for new physics. It is important to measure both decay modes, $K^+
A new heavy-ion experiment on fixed target, NA60+, has been proposed at the CERN SPS for data taking in the next years. Its main goals will be focused on precision studies of thermal dimuons, heavy quark and strangeness production in Pb-Pb collisions
Recently, the ATOMKI experiment has reported new evidence for the excess of $e^+ e^-$ events with a mass $sim$17 MeV in the nuclear transitions of $^4$He, that they previously observed in measurements with $^8$Be. These observations could be explaine
The DsTau project proposes to study tau-neutrino production in high-energy proton interactions. The outcome of this experiment are prerequisite for measuring the $ u_tau$ charged-current cross section that has never been well measured. Precisely meas
The NA62 experiment will begin taking data in 2015. Its primary purpose is a 10% measurement of the branching ratio of the ultrarare kaon decay $K^+ to pi^+ u bar{ u }$, using the decay in flight of kaons in an unseparated beam with momentum 75 GeV