ترغب بنشر مسار تعليمي؟ اضغط هنا

Differential kinetic dynamics and heating of ions in the turbulent solar wind

91   0   0.0 ( 0 )
 نشر من قبل Francesco Valentini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas with respect to protons is observed. Interestingly, the preferential heating process occurs in spatial regions nearby the peaks of ion vorticity and where strong deviations from thermodynamic equilibrium are recovered. Moreover, by feeding a simulator of a top-hat ion spectrometer with the output of the kinetic simulations, we show that measurements by such spectrometer planned on board the Turbulence Heating ObserveR (THOR mission), a candidate for the next M4 space mission of the European Space Agency, can provide detailed three-dimensional ion velocity distributions, highlighting important non-Maxwellian features. These results support the idea that future space missions will allow a deeper understanding of the physics of the interplanetary medium.

قيم البحث

اقرأ أيضاً

Evidence for inhomogeneous heating in the interplanetary plasma near current sheets dynamically generated by magnetohydrodynamic (MHD) turbulence is obtained using measurements from the ACE spacecraft. These coherent structures only constitute 19% of the data, but contribute 50% of the total plasma internal energy. Intermittent heating manifests as elevations in proton temperature near current sheets, resulting in regional heating and temperature enhancements extending over several hours. The number density of non-Gaussian structures is found to be proportional to the mean proton temperature and solar wind speed. These results suggest magnetofluid turbulence drives intermittent dissipation through a hierarchy of coherent structures, which collectively could be a significant source of coronal and solar wind heating.
353 - G. Q. Zhao , H. Q. Feng , D. J. Wu 2020
According to emph{Wind} observations between June 2004 and May 2019, this Letter investigates the proton and alpha particle temperatures in the space of ($theta_d$, $V_d/V_A$) for the first time, where $theta_d$ and $V_d$ are the radial angle and mag nitude of alpha$-$proton differential flow vector respectively, $V_A$ is the local Alfven speed. Results show that the temperatures significantly depend on $theta_d$ as well as $V_d/V_A$. In case of low proton parallel beta ($beta_{p{parallel}} < 1$), it is found that the proton perpendicular temperature is clearly enhanced when $theta_d$ is small ($lesssim 45^circ$) and $V_d/V_A gtrsim 0.5$. On the contrary, the perpendicular temperature of alpha particles is considerably enhanced when $theta_d$ is large ($gtrsim 90^circ$) or $V_d/V_A$ is sufficiently small. The maximum of proton parallel temperature takes place at $theta_d sim 90^circ$ accompanied by higher $beta_{p{parallel}}$ and by larger turbulence amplitude of magnetic fluctuations in inertial range. This study should present strong evidence for cyclotron resonance heating of protons and alpha particles in the solar wind. Other mechanisms including Landau resonance and stochastic heating are also proposed, which tend to have different ($theta_d$, $V_d/V_A$) spaces than cyclotron resonance heating.
We simulate decaying turbulence in a homogeneous pair plasma using three dimensional electromagnetic particle-in-cell (PIC) method. A uniform background magnetic field permeates the plasma such that the magnetic pressure is three times larger than th e thermal pressure and the turbulence is generated by counter-propagating shear Alfven waves. The energy predominately cascades transverse to the background magnetic field, rendering the turbulence anisotropic at smaller scales. We simultaneously move several ion species of varying charge to mass ratios in our simulation and show that the particles of smaller charge to mass ratios are heated and accelerated to non-thermal energies at a faster rate, in accordance with the enhancement of heavy ions and non-thermal tail in their energy spectrum observed in the impulsive solar flares. We further show that the heavy ions are energized mostly in the direction perpendicular to the background magnetic field with a rate consistent with our analytical estimate of the rate of heating due to cyclotron resonance with the Alfven waves of which a large fraction is due to obliquely propagating waves.
Kinetic plasma processes have been investigated in the framework of solar wind turbulence, employing Hybrid Vlasov-Maxwell (HVM) simulations. The dependency of proton temperature anisotropy T_{perp}/T_{parallel} on the parallel plasma beta beta_{para llel}, commonly observed in spacecraft data, has been recovered using an ensemble of HVM simulations. By varying plasma parameters, such as plasma beta and fluctuation level, the simulations explore distinct regions of the parameter space given by T_{perp}/T_{parallel} and beta_{parallel}, similar to solar wind sub-datasets. Moreover, both simulation and solar wind data suggest that temperature anisotropy is not only associated with magnetic intermittent events, but also with gradient-type structures in the flow and in the density. This connection between non-Maxwellian kinetic effects and various types of intermittency may be a key point for understanding the complex nature of plasma turbulence.
In this Letter we study the connection between the large-scale dynamics of the turbulence cascade and particle heating on kinetic scales. We find that the inertial range turbulence amplitude ($delta B_i$; measured in the range of 0.01-0.1 Hz) is a si mple and effective proxy to identify the onset of significant ion heating and when it is combined with $beta_{||p}$, it characterizes the energy partitioning between protons and electrons ($T_p/T_e$), proton temperature anisotropy ($T_{perp}/T_{||}$) and scalar proton temperature ($T_p$) in a way that is consistent with previous predictions. For a fixed $delta B_i$, the ratio of linear to nonlinear timescales is strongly correlated with the scalar proton temperature in agreement with Matthaeus et al., though for solar wind intervals with $beta_{||p}>1$ some discrepancies are found. For a fixed $beta_{||p}$, an increase of the turbulence amplitude leads to higher $T_p/T_e$ ratios, which is consistent with the models of Chandran et al. and Wu et al. We discuss the implications of these findings for our understanding of plasma turbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا