ﻻ يوجد ملخص باللغة العربية
The recent introduction of synchrophasor technology into power distribution systems has given impetus to various monitoring, diagnostic, and control applications, such as system identification and event detection, which are crucial for restoring service, preventing outages, and managing equipment health. Drawing on the existing framework for inferring topology and admittances of a power network from voltage and current phasor measurements, this paper proposes an online algorithm for event detection and localization in unbalanced three-phase distribution systems. Using a convex relaxation and a matrix partitioning technique, the proposed algorithm is capable of identifying topology changes and attributing them to specific categories of events. The performance of this algorithm is evaluated on a standard test distribution feeder with synthesized loads, and it is shown that a tripped line can be detected and localized in an accurate and timely fashion, highlighting its potential for real-world applications.
A significant portion of the literature on fault localization assumes (more or less explicitly) that there are sufficient reliable measurements to guarantee that the system is observable. While several heuristics exist to break the observability barr
This paper presents the design and the implementation of a servo-clock (SC) for low-cost Phasor Measurement Units (PMUs). The SC relies on a classic Proportional Integral (PI) controller, which has been properly tuned to minimize the synchronization
Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in pract
Recently we developed supervisor localization, a top-down approach to distributed control of discrete-event systems (DES) with finite behavior. Its essence is the allocation of monolithic (global) control action among the local control strategies of
We study the new concept of relative coobservability in decentralized supervisory control of discrete-event systems under partial observation. This extends our previous work on relative observability from a centralized setup to a decentralized one. A