ﻻ يوجد ملخص باللغة العربية
In this study, we are going to discuss the accelerated expansion of the universe and how this accelerated expansion affects the paths of photons from cosmic microwave background radiation (CMB). Then we will see how wide-field galaxy surveys along with cosmic CMB anisotropy maps can help us in studying dark energy. The cross-correlation of galaxy over/under-density maps with CMB anisotropy maps help us in measuring one of the most useful signatures of dark energy i.e. Integrated Sachs-Wolfe (ISW) effect. ISW effect explains the blue-shifting and red-shifting of CMB photons when they reach to us after passing through large scale structures and super-voids respectively. We will look into the theoretical foundations behind ISW effect and discuss how modern all sky galaxy surveys like EMU-ASKAP will be useful in studying the effect.
We show that linear redshift distortions in the galaxy distribution can affect the ISW galaxy-temperature signal, when the galaxy selection function is derived from a redshift survey. We find this effect adds power to the ISW signal at all redshifts
The integrated Sachs-Wolfe (ISW) effect is caused by the decay of cosmological gravitational potential, and is therefore a unique probe of dark energy. However, its robust detection is still problematic. Various tensions between different data sets,
Based on CMB maps from the 2013 Planck Mission data release, this paper presents the detection of the ISW effect, i.e., the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to
We study the late-time Integrated Sachs-Wolfe (ISW) effect in $f(R)$ gravity using N-body simulations. In the $f(R)$ model under study, the linear growth rate is larger than that in general relativity (GR). This slows down the decay of the cosmic pot
This paper presents a study of the ISW effect from the Planck 2015 temperature and polarization data release. The CMB is cross-correlated with different LSS tracers: the NVSS, SDSS and WISE catalogues, and the Planck 2015 lensing map. This cross-corr