ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of electron holes on cyclotron maser emission driven by horseshoe distributions

147   0   0.0 ( 0 )
 نشر من قبل Guo-Qing Zhao
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This Brief Communication presents a quantitative investigation for the effect of electron holes on electron-cyclotron maser (ECM) driven by horseshoe distributions. The investigation is based on an integrated distribution function for the horseshoe distributions with electron holes. Results show that the presence of electron holes can significantly enhance the ECM growth rate by 2-3 times in a very narrow waveband. The present study suggests that these electron holes probably are responsible for some fine structures of radiations, such as narrowband events in auroral kilometric radiation and solar microwave spikes.

قيم البحث

اقرأ أيضاً

73 - Hao Ning , Yao Chen , Sulan Ni 2021
Content. Electron-cyclotron maser emission (ECME) is the favored mechanism for solar radio spikes and has been investigated extensively since the 1980s. Most studies relevant to solar spikes employ a loss-cone-type distribution of energetic electrons , generating waves mainly in the fundamental X/O mode (X1/O1), with a ratio of plasma oscillation frequency to electron gyrofrequency (${omega}_ {pe}/{Omega}_{ce}$) lower than 1. Despite the great progress made in this theory, one major problem is how the fundamental emissions pass through the second-harmonic absorption layer in the corona and escape. This is generally known as the escaping difficulty of the theory. Aims. We study the harmonic emissions generated by ECME driven by energetic electrons with the horseshoe distribution to solve the escaping difficulty of ECME for solar spikes. Methods. We performed a fully kinetic electromagnetic PIC simulation with ${omega}_ {pe}/{Omega}_{ce}$ = 0.1, corresponding to the strongly magnetized plasma conditions in the flare region, with energetic electrons characterized by the horseshoe distribution. We also varied the density ratio of energetic electrons to total electrons ($n_e/n_0$) in the simulation. Results. We obtain efficient amplification of waves in Z and X2 modes, with a relatively weak growth of O1 and X3. With a higher-density ratio, the X2 emission becomes more intense, and the rate of energy conversion from energetic electrons into X2 modes can reach $sim$0.06% and 0.17%, with $n_e/n_0$= 5% and 10%, respectively. Conclusions. We find that the horseshoe-driven ECME can lead to an efficient excitation of X2 and X3 with a low value of ${omega}_ {pe}/{Omega}_{ce}$, providing novel means for resolving the escaping difficulty of ECME when applied to solar radio spikes. The simultaneous growth of X2 and X3 can be used to explain some harmonic structures observed in solar spikes.
Context. The Sun is an active source of radio emission ranging from long duration radio bursts associated with solar flares and coronal mass ejections to more complex, short duration radio bursts such as solar S bursts, radio spikes and fibre bursts. While plasma emission is thought to be the dominant emission mechanism for most radio bursts, the electron-cyclotron maser (ECM) mechanism may be responsible for more complex, short-duration bursts as well as fine structures associated with long-duration bursts. Aims. We investigate the conditions for ECM in the solar corona by considering the ratio of the electron plasma frequency {omega}p to the electron-cyclotron frequency {Omega}e. The ECM is theoretically possible when {omega}p/{Omega}e < 1. Methods. Two-dimensional electron density, magnetic field, plasma frequency, and electron cyclotron frequency maps of the off- limb corona were created using observations from SDO/AIA and SOHO/LASCO, together with potential field extrapolations of the magnetic field. These maps were then used to calculate {omega}p/{Omega}e and Alfven velocity maps of the off-limb corona. Results. We found that the condition for ECM emission ({omega}p/{Omega}e < 1) is possible at heights < 1.07 R_sun in an active region near the limb; that is, where magnetic field strengths are > 40 G and electron densities are greater than 3x10^8 cm-3. In addition, we found comparatively high Alfven velocities (> 0.02 c or > 6000 km s-1) at heights < 1.07 R_sun within the active region. Conclusions. This demonstrates that the condition for ECM emission is satisfied within areas of the corona containing large magnetic fields, such as the core of a large active region. Therefore, ECM could be a possible emission mechanism for high-frequency radio and microwave bursts.
The electron-cyclotron maser instability is widespread in the Universe, producing, e.g., radio emission of the magnetized planets and cool substellar objects. Diagnosing the parameters of astrophysical radio sources requires comprehensive nonlinear s imulations of the radiation process. We simulate the electron-cyclotron maser instability in a very low-beta plasma. The model used takes into account the radiation escape from the source region and the particle flow through this region. We developed a kinetic code to simulate the time evolution of an electron distribution in a radio emission source. The model includes the terms describing the particle injection to and escape from the emission source region. The spatial escape of the emission from the source is taken into account by using a finite amplification time. The unstable electron distribution of the horseshoe type is considered. A number of simulations were performed for different parameter sets typical of the magnetospheres of planets and ultracool dwarfs. The generated emission (corresponding to the fundamental extraordinary mode) has a frequency close to the electron cyclotron frequency and propagates across the magnetic field. Shortly after the onset of a simulation, the electron distribution reaches a quasi-stationary state. If the emission source region is relatively small, the resulting electron distribution is similar to that of the injected electrons; the emission intensity is low. In larger sources, the electron distribution may become nearly flat due to the wave-particle interaction, while the conversion efficiency of the particle energy flux into waves reaches 10-20%. We found good agreement of our model with the in situ observations in the source regions of auroral radio emissions of the Earth and Saturn. The expected characteristics of the electron distributions in the magnetospheres of ultracool dwarfs were obtained.
113 - Gavin Ramsay 2007
Unipolar induction (UI) is a fundamental physical process, which occurs when a conducting body transverses a magnetic field. It has been suggested that UI is operating in RX J0806+15 and RX J1914+24, which are believed to be ultra-compact binaries wi th orbital periods of 5.4 min and 9.6 min respectively. The UI model predicts that those two sources may be electron cyclotron maser sources at radio wavelengths. Other systems in which UI has been predicted to occur are short period extra-solar terrestrial planets with conducting cores. If UI is present, circularly polarised radio emission is predicted to be emitted. We have searched for this predicted radio emission from short period binaries using the VLA and ATCA. In one epoch we find evidence for a radio source, coincident in position with the optical position of RX J0806+15. Although we cannot completely exclude that this is a chance alignment between the position of RX J0806+15 and an artifact in the data reduction process, the fact that it was detected at a significance level of 5.8 sigma and found to be transient, suggests that it is more likely that RX J0806+15 is a transient radio source. We find an upper limit on the degree of circular polarisation to be ~50%. The inferred brightness temperature exceeds 10^18 K, which is too high for any known incoherent process, but is consistent with maser emission and UI being the driving mechanism. We did not detect radio emission from ES Cet, RX J1914+24 or Gliese 876.
We observe that high-Q electromagnetic cavity resonances increase the cyclotron cooling rate of pure electron plasmas held in a Penning-Malmberg trap when the electron cyclotron frequency, controlled by tuning the magnetic field, matches the frequenc y of standing wave modes in the cavity. For certain modes and trapping configurations, this can increase the cooling rate by factors of ten or more. In this paper, we investigate the variation of the cooling rate and equilibrium plasma temperatures over a wide range of parameters, including the plasma density, plasma position, electron number, and magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا