ترغب بنشر مسار تعليمي؟ اضغط هنا

The Burrell Schmidt Deep Virgo Survey: Tidal Debris, Galaxy Halos, and Diffuse Intracluster Light in the Virgo Cluster

181   0   0.0 ( 0 )
 نشر من قبل Chris Mihos
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a deep imaging survey of the Virgo Cluster, designed to study the connection between cluster galaxies and Virgos diffuse intracluster light (ICL). Our observations span roughly 16 square degrees and reach a 3-sigma depth of mu(B)=29.5 and mu(V)=28.5 mag/arcsec^2. At these depths, the limiting systematic uncertainties are astrophysical: scattered starlight from foreground Galactic dust, and variations in faint background sources. The dust-scattered starlight is well-traced by deep far-infrared imaging, making it distinguishable from true Virgo diffuse light. Our imaging maps the Virgo core around M87 and the adjacent M86/M84 region, in subcluster B around M49, and in the more distant W cloud around NGC 4365. Most of the detected ICL is found in the Virgo core and within the W cloud, with little evidence for extensive ICL in subcluster B. The large amount of diffuse light seen in the infalling W cloud likely illustrates the importance of the group environment for generating ICL. The bulk of the detected ICL is fairly red (B-V=0.7-0.9), indicative of old stellar populations. We estimate a total Virgo ICL fraction of 7-15%, somewhat smaller than expected for massive, evolved clusters, suggesting that Virgo is still growing its ICL component. We trace M87s extremely boxy halo out to ~ 150 kpc, and show that the current stripping rate of low luminosity galaxies is insufficient to have built M87s outer halo over a Hubble time. Finally, we identify another large ultra-diffuse galaxy in Virgo, likely in the process of being shredded by the cluster tidal field.



قيم البحث

اقرأ أيضاً

We compare the distribution of diffuse intracluster light detected in the Virgo Cluster via broadband imaging with that inferred from searches for intracluster planetary nebulae (IPNe). We find a rough correspondence on large scales (~ 100 kpc) betwe en the two, but with very large scatter (~ 1.3 mag/arcsec^2). On smaller scales (1 -- 10 kpc), the presence or absence of correlation is clearly dependent on the underlying surface brightness. On these scales, we find a correlation in regions of higher surface brightness (mu_V < ~27) which are dominated by the halos of large galaxies such as M87, M86, and M84. In those cases, we are likely tracing PNe associated with galaxies rather than true IPNe. In true intracluster fields, at lower surface brightness, the correlation between luminosity and IPN candidates is much weaker. While a correlation between broadband light and IPNe is expected based on stellar populations, a variety of statistical, physical, and methodological effects can act to wash out this correlation and explain the lack of a strong correlation at lower surface brightness found here. [abridged]
We present the first detection of diffuse dust in the intra-cluster medium of the Virgo cluster out to $sim$0.4 virial radii, and study the radial variation of its properties on a radial scale of the virial radius. Analysing near-UV - $i$ colours for a sample of $sim12000$ background galaxies with redshifts $0.02 < z < 0.8$, we find significant colour reddening and relate it to variation in $E(B-V)$ values. The $E(B-V)$ mean profile shows a dust component characterised by an average reddening $E(B-V)sim0.042 pm 0.004$ mag within 1.5 degrees ($sim0.3, r_{vir}$) from the cluster centre. Assuming a Large Magellanic Cloud extinction law, we derive an average visual extinction $A_{V} = 0.14pm 0.01$ for a total dust mass, $M_{d} = 2.5pm0.2times10^{9}M_{odot}$, hence a dust-to-gas mass ratio $M_{d}/M_{g} = 3.0pm 0.3 times 10^{-4}$. Based on the upper limits on the flux density $mathrm{I_{250mu m} = 0.1, MJy sr^{-1}} $ derived from $Herschel$ data, we estimate an upper limit for the dust temperature of $T_{d} sim 10, K$. However, similar densities can be obtained with dust at higher temperatures with lower emissivities. The Virgo cluster has diffuse dust in its intra-cluster medium characterised by different physical properties as those characterising the Milky Way dust. The diffuse dust in Virgo is transported into the cluster space through similar phenomena (stripping) as those building up the optical intra-cluster light, and it constitutes an additional cooling agent of the cluster gas.
The intracluster light (ICL) is a faint diffuse stellar component in clusters made of stars not bound to individual galaxies. We have carried out a large scale study of this component in the nearby Virgo cluster. The diffuse light is traced using pla netary nebulae (PNe). The PNe are detected in the on-band image due to their strong emission in the [OIII] 5007 line, but disappear in the off-band image. The contribution of Ly-alpha emitters at z=3.14 are corrected statistically using blank field surveys. We have surveyed a total area of 3.3 square degrees in the Virgo cluster with eleven fields located at different radial distances. Those fields located at smaller radii than 80 arcmin from the cluster center contain most of the detected diffuse light. In this central region of the cluster, the ICL has a surface brightness in the range 28.8 - 30 mag per sqarsec in the B band, it is not uniformly distributed, and represents about 7% of the total galaxy light in this area. At distances larger than 80 arcmin the ICL is confined to single fields and individual sub-structures, e.g. in the Virgo sub-clump B, the M60/M59 group. For several fields at 2 and 3 degrees from the Virgo cluster center we set only upper limits. These results indicate that the ICL is not homogeneously distributed in the Virgo core, and it is concentrated in the high density regions of the Virgo cluster, e.g. the cluster core and other sub-structures. Outside these regions, the ICL is confined within areas of 100 kpc in size, where tidal effects may be at work. These observational results link the formation of the ICL with the formation history of the most luminous cluster galaxies.
CONTEXT: The Virgo direction has been observed at many wavelengths in the recent years, in particular in the ultraviolet with GALEX. The far ultraviolet (FUV) diffuse light detected by GALEX bears interesting information on the large scale distributi on of Galactic dust, owing to the GALEX FUV band sensitivity and resolution. AIMS: We aim to characterise the ultraviolet large scale distribution of diffuse emission in the Virgo direction. A map of this emission may become useful for various studies by identifying regions where dust affects observations by either scattering light or absorbing radiation. METHODS: We construct mosaics of the FUV and near ultraviolet diffuse emission over a large sky region (RA 12 to 13 hours, DEC 0 to 20 degrees) surrounding the Virgo cluster, using all the GALEX available data in the area. We test for the first time the utilisation of the FUV diffuse light as a Galactic extinction E(B-V) tracer. RESULTS: The FUV diffuse light scattered on cirrus reveals details in their geometry. Despite a large dispersion, the FUV diffuse light correlates roughly with other Galactic dust tracers (coming from IRAS, Herschel, Planck), offering an opportunity to use the FUV emission to locate them in future studies with a better resolution (about 5 arcsec native resolution, 20 arcsec pixels maps presented in this paper) than several usual tracers. Estimating the Galactic dust extinction on the basis of this emission allows us to find a smaller dispersion in the NUV-i colour of background galaxies at a given E(B-V)than with other tracers. The diffuse light mosaics obtained in this work are made publicly available.
228 - M. Baes , D. Herranz , S. Bianchi 2014
We cross-correlate the Planck Catalogue of Compact Sources (PCCS) with the fully sampled 84 deg2 Herschel Virgo Cluster Survey (HeViCS) fields. We search for and identify the 857 and 545 GHz PCCS sources in the HeViCS fields by studying their FIR/sub mm and optical counterparts. We find 84 and 48 compact Planck sources in the HeViCS fields at 857 and 545 GHz, respectively. Almost all sources correspond to individual bright Virgo Cluster galaxies. The vast majority of the Planck detected galaxies are late-type spirals, with the Sc class dominating the numbers, while early-type galaxies are virtually absent from the sample, especially at 545 GHz. We compare the HeViCS SPIRE flux densities for the detected galaxies with the four different PCCS flux density estimators and find an excellent correlation with the aperture photometry flux densities, even at the highest flux density levels. We find only seven PCCS sources in the HeViCS fields without a nearby galaxy as obvious counterpart, and conclude that all of these are dominated by Galactic cirrus features or are spurious detections. No Planck sources in the HeViCS fields seem to be associated to high-redshift proto-clusters of dusty galaxies or strongly lensed submm sources. Finally, our study is the first empirical confirmation of the simulation-based estimated completeness of the PCCS, and provides a strong support of the internal PCCS validation procedure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا