ترغب بنشر مسار تعليمي؟ اضغط هنا

Central limit theorem and bootstrap procedure for Wassersteins variations with an application to structural relationships between distributions

263   0   0.0 ( 0 )
 نشر من قبل Paula Gordaliza Pastor
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Wasserstein barycenters and variance-like criteria based on the Wasserstein distance are used in many problems to analyze the homogeneity of collections of distributions and structural relationships between the observations. We propose the estimation of the quantiles of the empirical process of Wassersteins variation using a bootstrap procedure. We then use these results for statistical inference on a distribution registration model for general deformation functions. The tests are based on the variance of the distributions with respect to their Wassersteins barycenters for which we prove central limit theorems, including bootstr



قيم البحث

اقرأ أيضاً

This paper derives central limit and bootstrap theorems for probabilities that sums of centered high-dimensional random vectors hit hyperrectangles and sparsely convex sets. Specifically, we derive Gaussian and bootstrap approximations for probabilit ies $Pr(n^{-1/2}sum_{i=1}^n X_iin A)$ where $X_1,dots,X_n$ are independent random vectors in $mathbb{R}^p$ and $A$ is a hyperrectangle, or, more generally, a sparsely convex set, and show that the approximation error converges to zero even if $p=p_nto infty$ as $n to infty$ and $p gg n$; in particular, $p$ can be as large as $O(e^{Cn^c})$ for some constants $c,C>0$. The result holds uniformly over all hyperrectangles, or more generally, sparsely convex sets, and does not require any restriction on the correlation structure among coordinates of $X_i$. Sparsely convex sets are sets that can be represented as intersections of many convex sets whose indicator functions depend only on a small subset of their arguments, with hyperrectangles being a special case.
191 - Salim Bouzebda 2009
The purpose of this note is to provide an approximation for the generalized bootstrapped empirical process achieving the rate in Kolmos et al. (1975). The proof is based on much the same arguments as in Horvath et al. (2000). As a consequence, we est ablish an approximation of the bootstrapped kernel-type density estimator
We consider the problem of optimal transportation with general cost between a empirical measure and a general target probability on R d , with d $ge$ 1. We extend results in [19] and prove asymptotic stability of both optimal transport maps and poten tials for a large class of costs in R d. We derive a central limit theorem (CLT) towards a Gaussian distribution for the empirical transportation cost under minimal assumptions, with a new proof based on the Efron-Stein inequality and on the sequential compactness of the closed unit ball in L 2 (P) for the weak topology. We provide also CLTs for empirical Wassertsein distances in the special case of potential costs | $bullet$ | p , p > 1.
We establish a central limit theorem for (a sequence of) multivariate martingales which dimension potentially grows with the length $n$ of the martingale. A consequence of the results are Gaussian couplings and a multiplier bootstrap for the maximum of a multivariate martingale whose dimensionality $d$ can be as large as $e^{n^c}$ for some $c>0$. We also develop new anti-concentration bounds for the maximum component of a high-dimensional Gaussian vector, which we believe is of independent interest. The results are applicable to a variety of settings. We fully develop its use to the estimation of context tree models (or variable length Markov chains) for discrete stationary time series. Specifically, we provide a bootstrap-based rule to tune several regularization parameters in a theoretically valid Lepski-type method. Such bootstrap-based approach accounts for the correlation structure and leads to potentially smaller penalty choices, which in turn improve the estimation of the transition probabilities.
63 - Thomas Royen 2016
A (p-1)-variate integral representation is given for the cumulative distribution function of the general p-variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical functions is integrated over arguments from (-pi,pi). To facilitate the computation, these formulas are given more detailed for p=2 and p=3. These (p-1)-variate integrals are also derived for the diagonal of a non-central complex Wishart Matrix. Furthermore, some alternative formulas are given for the cases with an associated one-factorial (pxp)-correlation matrix R, i.e. R differs from a suitable diagonal matrix only by a matrix of rank 1, which holds in particular for all (3x3)-R with no vanishing correlation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا