ﻻ يوجد ملخص باللغة العربية
Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. Using the recently developed momentum-resolved electron energy-loss spectroscopy (M-EELS), we study electronic collective modes in the transition metal dichalcogenide semimetal, 1T-TiSe$_2$. Near the phase transition temperature, T$_c$ = 190 K, the energy of the electronic mode falls to zero at nonzero momentum, indicating dynamical slowing down of plasma fluctuations and crystallization of the valence electrons into an exciton condensate. Our study provides compelling evidence for exciton condensation in a three-dimensional solid and establishes M-EELS as a versatile technique sensitive to valence band excitations in quantum materials.
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction
We have investigated the exciton dynamics in transition metal dichalcogenide mono-layers using time-resolved photoluminescence experiments performed with optimized time-resolution. For MoSe2 monolayers, we measure $tau_{rad}=1.8pm0.2$ ps that we inte
Recent advances in tuning the correlated behavior of graphene and transition-metal dichalcogenides (TMDs) have opened a new frontier in the study of many-body physics in two dimensions and promise exciting possibilities for new quantum technologies.
The direct gap interband transitions in transition metal dichalcogenides monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the $K^+$ or $K^-$ valley in momentum space are induced. L
In the presence of multiple bands, well-known electronic instabilities may acquire new complexity. While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDWs) has been largely ignore