ترغب بنشر مسار تعليمي؟ اضغط هنا

Kaon semileptonic decays with $N_f=2+1+1$ HISQ fermions and physical light-quark masses

122   0   0.0 ( 0 )
 نشر من قبل Elvira Gamiz
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the reduction of errors in the calculation of the form factor $f_+^{K pi}(0)$ with HISQ fermions on the $N_f=2+1+1$ MILC configurations from increased statistics on some key ensembles, new data on ensembles with lattice spacings down to 0.042 fm and the study of finite-volume effects within staggered ChPT. We also study the implications for the unitarity of the CKM matrix in the first row and for current tensions with leptonic determinations of $vert V_{us}vert$.

قيم البحث

اقرأ أيضاً

We present the first calculation of the kaon semileptonic form factor with sea and valence quark masses tuned to their physical values in the continuum limit of 2+1 flavour domain wall lattice QCD. We analyse a comprehensive set of simulations at the phenomenologically convenient point of zero momentum transfer in large physical volumes and for two different values of the lattice spacing. Our prediction for the form factor is f+(0)=0.9685(34)(14) where the first error is statistical and the second error systematic. This result can be combined with experimental measurements of K->pi decays for a determination of the CKM-matrix element for which we predict |Vus|=0.2233(5)(9) where the first error is from experiment and the second error from the lattice computation.
79 - M. Bruno , I. Campos , J. Koponen 2019
We present a nearly final analysis of the $u/d$ and $s$ quark masses, extracted using the PCAC quark masses reported in [PRD 95 (2017) 074504]. The data is based on the CLS $N_f = 2 + 1$ simulations with Wilson/Clover quarks and Luscher-Weisz gauge a ction, at four $beta$ values (i.e. lattice spacings) and a range of quark masses. We use the ALPHA results of [EPJC 78 (2018) 387] for non-perturbative quark mass renormalisation and RG-running from hadronic to electroweak scales in the Schrodinger Functional scheme. Quark masses are quoted both in the $overline{rm MS}$ scheme and as RGI quantities.
We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric QCD (isoQCD), $f_K / f_pi$, making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) with $N_f = 2 + 1 + 1$ flavors of Wilson-clover twisted-mass quarks, including configurations close to the physical point for all dynamical flavors. The simulations are carried out at three values of the lattice spacing ranging from $sim 0.068$ to $sim 0.092$ fm with linear lattice size up to $L sim 5.5$~fm. The scale is set by the PDG value of the pion decay constant, $f_pi^{isoQCD} = 130.4~(2)$ MeV, at the isoQCD pion point, $M_pi^{isoQCD} = 135.0~(2)$ MeV, obtaining for the gradient-flow (GF) scales the values $w_0 = 0.17383~(63)$ fm, $sqrt{t_0} = 0.14436~(61)$ fm and $t_0 / w_0 = 0.11969~(62)$ fm. The data are analyzed within the framework of SU(2) Chiral Perturbation Theory (ChPT) without resorting to the use of renormalized quark masses. Fixing the strange quark mass by using $M_K^{isoQCD} = 494.2~(4)$ MeV, we get $(f_K / f_pi)^{isoQCD} = 1.1995~(44)$ fm, where the error includes both statistical and systematic uncertainties. Implications for the Cabibbo-Kobayashi-Maskawa (CKM) matrix element $|V_{us}|$ and for the first-row CKM unitarity are discussed.
68 - N. Eicker , Th. Lippert , B. Orth 2001
We present new data on the mass of the light and strange quarks from SESAM/T$chi$L. The results were obtained on lattice-volumes of $16^3times 32$ and $24^3times 40$ points, with the possibility to investigate finite-size effects. Since the SESAM/T$c hi$L ensembles at $beta=5.6$ have been complemented by configurations with $beta=5.5$, moreover, we are now able to attempt the continuum extrapolation (CE) of the quark masses with standard Wilson fermions.
We report on the computation of the light quark vacuum polarization with 2+1+1 flavors of H ISQ fermions at the physical point and its contribution to the muon anomalous magnetic moment. Three ensembles, generated by the MILC collaboration, are used to take the continuum limit. We compare our result with recent ones in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا