ﻻ يوجد ملخص باللغة العربية
The scalar dipole polarizabilities, $alpha_{E1}$ and $beta_{M1}$, are fundamental properties related to the internal dynamics of the nucleon. The currently accepted values of the proton polarizabilities were determined by fitting to unpolarized proton Compton scattering cross section data. The measurement of the beam asymmetry $Sigma_{3}$ in a certain kinematical range provides an alternative approach to the extraction of the scalar polarizabilities. At the Mainz Microtron (MAMI) the beam asymmetry was measured for Compton scattering below pion photoproduction threshold for the first time. The results are compared with model calculations and the influence of the experimental data on the extraction of the scalar polarizabilities is determined.
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polari
We present the first attempt to extract the scalar dipole dynamical polarizabilities from proton real Compton scattering data below pion-production threshold. The theoretical framework combines dispersion relations technique, low-energy expansion and
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $oslash$ $time
The Compton double-polarization observable $Sigma_{2z}$ has been measured for the first time in the $Delta(1232)$ resonance region using a circularly polarized photon beam incident on a longitudinally polarized target at the Mainz Microtron. This pap
Double-polarization observables in the reaction $vec{e}p rightarrow evec{p}gamma{}$ have been measured at $Q^2=0.33 (GeV/c)^2$. The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam p