ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully differential NLO predictions for the rare muon decay

160   0   0.0 ( 0 )
 نشر من قبل Adrian Signer
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the automation program GoSam, fully differential NLO corrections were obtained for the rare decay of the muon $muto e ubar u ee$. This process is an important Standard Model background to searches of the Mu3e collaboration for lepton-flavour violation, as it becomes indistinguishable from the signal $muto 3e$ if the neutrinos carry little energy. With our NLO program we are able to compute the branching ratio as well as custom-tailored observables for the experiment. With minor modifications, related decays of the tau can also be computed.



قيم البحث

اقرأ أيضاً

We write down the four-dimensional fully differential decay distribution for the top quark decay $t to Wb to ell u b$. We discuss how its eight physical parameters can be measured, either with a global fit or with the use of selected one-dimensional distributions and asymmetries. We give expressions for the top decay amplitudes for a general $tbW$ interaction, and show how the untangled measurement of the two components of the fraction of longitudinal $W$ bosons - those with $b$ quark helicities of $1/2$ and $-1/2$, respectively - could improve the precision of a global fit to the $tbW$ vertex.
Accessing the polarization of weak bosons provides an important probe for the mechanism of electroweak symmetry breaking. Relying on the double-pole approximation and on the separation of polarizations at the amplitude level, we study WZ production a t the LHC, with both bosons in a definite polarization mode, including NLO QCD effects. We compare results obtained defining the polarization vectors in two different frames. Integrated and differential cross-sections in a realistic fiducial region are presented.
81 - R. Pittau 2010
I present a new and reliable method to test the numerical accuracy of NLO calculations based on modern OPP/Generalized Unitarity techniques. A convenient solution to rescue most of the detected numerically inaccurate points is also proposed.
We obtain predictions accurate at the next-to-leading order in QCD for the production of a generic spin-two particle in the most relevant channels at the LHC: production in association with coloured particles (inclusive, one jet, two jets and $tbar t $), with vector bosons ($Z,W^pm,gamma$) and with the Higgs boson. We present total and differential cross sections as well as branching ratios as a function of the mass and the collision energy also considering the case of non-universal couplings to standard model particles. We find that the next-to-leading order corrections give rise to sizeable $K$ factors for many channels, in some cases exposing the unitarity-violating behaviour of non-universal couplings scenarios, and in general greatly reduce the theoretical uncertainties. Our predictions are publicly available in the MadGraph5_aMC@NLO framework and can, therefore, be directly used in experimental simulations of spin-two particle production for arbitrary values of the mass and couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا