ﻻ يوجد ملخص باللغة العربية
The coupling of active, self-motile particles to topological constraints can give rise to novel non-equilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these non-equilibrium processes, and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. Our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.
Collective motion is often modeled within the framework of active fluids, where the constituent active particles, when interactions with other particles are switched off, perform normal diffusion at long times. However, in biology, single-particle su
Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently
We develop a theoretical description of the topological disentanglement occurring when torus knots reach the ends of a semi-flexible polymer under tension. These include decays into simpler knots and total unknotting. The minimal number of crossings
Anomalous diffusion, manifest as a nonlinear temporal evolution of the position mean square displacement, and/or non-Gaussian features of the position statistics, is prevalent in biological transport processes. Likewise, collective behavior is often
We relate the breakdown of equations of states for the mechanical pressure of generic dry active systems to the lack of momentum conservation in such systems. We show how sources and sinks of momentum arise generically close to confining walls. These