ﻻ يوجد ملخص باللغة العربية
Superintegrable systems of 2nd order in 3 dimensions with exactly 3-parameter potentials are intriguing objects. Next to the nondegenerate 4-parameter potential systems they admit the maximum number of symmetry operators but their symmetry algebras dont close under commutation and not enough is known about their structure to give a complete classification. Some examples are known for which the 3-parameter system can be extended to a 4th order superintegrable system with a 4-parameter potential and 6 linearly independent symmetry generators. In this paper we use B^ocher contractions of the conformal Lie algebra $so(5,C)$ to itself to generate a large family of 3-parameter systems with 4th order extensions, on a variety of manifolds, and all from B^ocher contractions of a single generic system on the 3-sphere. We give a contraction scheme relating these systems. The results have myriad applications for finding explicit solutions for both quantum and classical systems.
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on $mathbb E^2$ and $mathbb S^2$ and for a family of systems defined on constant curvature manifolds. The procedure results e
Superintegrable systems on a symplectic manifold conventionally are considered. However, their definition implies a rather restrictive condition 2n=k+m where 2n is a dimension of a symplectic manifold, k is a dimension of a pointwise Lie algebra of a
We consider a relativistic charged particle in a background scalar field depending on both space and time. Poincare, dilation and special conformal symmetries of the field generate conserved quantities in the charge motion, and we exploit this to gen
We consider the generic quadratic first integral (QFI) of the form $I=K_{ab}(t,q)dot{q}^{a}dot{q}^{b}+K_{a}(t,q)dot{q}^{a}+K(t,q)$ and require the condition $dI/dt=0$. The latter results in a system of partial differential equations which involve the
2nd-order conformal superintegrable systems in $n$ dimensions are Laplace equations on a manifold with an added scalar potential and $2n - 1$ independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenva