ﻻ يوجد ملخص باللغة العربية
We report on a measurement of the attenuation length for the scintillation light in the tonne size liquid argon target of the ArDM dark matter experiment. The data was recorded in the first underground operation of the experiment in single-phase operational mode. The results were achieved by comparing the light yield spectra from 39-Ar and 83m-Kr to a description of the ArDM setup with a model of full light ray tracing. A relatively low value close to 0.5 m was found for the attenuation length of the liquid argon bulk to its own scintillation light. We interpret this result as a presence of optically active impurities in the liquid argon which are not filtered by the installed purification systems. We also present analyses of the argon gas employed for the filling and discuss cross sections in the vacuum ultraviolet of various molecules in respect to purity requirements in the context of large liquid argon installations.
The use of xenon-doped liquid argon is a promising alternative for large pure liquid-argon TPCs. Not only xenon-doped liquid argon enhances the light production, mitigating the possible suppression due to impurities, but also it increases the wavelen
The propagation velocity of scintillation light in liquid argon $v_{g}$ at $lambda sim 128$~nm wavelength, has been measured for the first time in a dedicated experimental setup at CERN. The obtained result $frac{1}{v_{g}} = 7.46 pm 0.08$~ns/m , is t
In this paper we give a concise description of a liquid argon time projection chamber (LAr TPC) developed at Yale, and present results from its first calibration run with cosmic rays.
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements
Liquid argon is used as active medium in a variety of neutrino and Dark Matter experiments thanks to its excellent properties of charge yield and transport and as a scintillator. Liquid argon scintillation photons are emitted in a narrow band of 10~n