ﻻ يوجد ملخص باللغة العربية
Layer stacking and crystal lattice symmetry play important roles in the band structure and the Landau levels of multilayer graphene. ABA-stacked trilayer graphene possesses mirror-symmetry-protected monolayer-like and bilayer-like band structures. Broken mirror symmetry by a perpendicular electric field therefore induces hybridization between these bands and various quantum Hall phases emerge. We experimentally explore the evolution of Landau levels in ABA-stacked trilayer graphene under electric field. We observe a variety of valley and orbital dependent Landau level evolutions. These evolutions are qualitatively well explained by considering the hybridization between multiple Landau levels possessing close Landau level indices and the hybridization between every third Landau level orbitals due to the trigonal warping effect. These observations are consistent with numerical calculations. The combination of experimental and numerical analysis thus reveals the entire picture of Landau level evolutions decomposed into the monolayer- and bilayer-like band contributions in ABA-stacked trilayer graphene.
We present low temperature transport measurements on dual-gated suspended trilayer graphene in the quantum Hall (QH) regime. We observe QH plateaus at filling factors { u}=-8, -2, 2, 6, and 10, in agreement with the full-parameter tight binding calcu
Using infrared spectroscopy, we investigate bottom gated ABA-stacked trilayer graphene subject to an additional environment-induced p-type doping. We find that the Slonczewski-Weiss-McClure tight-binding model and the Kubo formula reproduce the gate
The band structure and the optical conductivity of an ABA (Bernal-type) stacked graphene trilayer are calculated. It is shown that, under appropriate doping, a strong resonant peak develops in the optical conductivity, located at the frequency corres
The sequence of the zeroth Landau levels (LLs) between filling factors $ u$=-6 to 6 in ABA-stacked trilayer graphene (TLG) is unknown because it depends sensitively on the non-uniform charge distribution on the three layers of ABA-stacked TLG. Using
For the first time, we have observed the obvious triple G peak splitting of ABA stacked trilayer graphene. The G peak splitting can be quantatively understood through the different electron-phonon coupling strength of Ea, Eb and Ea modes. In addition