ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear absorption coefficient of in-plane graphene on a silicon microring resonator

63   0   0.0 ( 0 )
 نشر من قبل Regis Barille
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that linear absorption coefficient (LAC) of a graphene-silicon hybrid waveguide (GSHW) is determined by the optical transmission spectra of a graphene coated symmetrically coupled add-drop silicon microring resonator (SC-ADSMR), of which the value is around 0.23 dB/um. In contrast to the traditional cut-back method, the measured results are not dependent on the coupling efficiency of the fiber tip and the waveguide. Moreover, precision evaluation of graphene coated silicon microring resonator (SMR) is crucial for the optoelectronic devices targeting for compact footprint and low power consumption.

قيم البحث

اقرأ أيضاً

We demonstrate an ultralow loss monolithic integrated lithium niobate photonic platform consisting of dry-etched subwavelength waveguides. We show microring resonators with a quality factor of 10$^7$ and waveguides with propagation loss as low as 2.7 dB/m.
Graphene integrated photonics provides several advantages over conventional Si photonics. Single layer graphene (SLG) enables fast, broadband, and energy-efficient electro-optic modulators, optical switches and photodetectors (GPDs), and is compatibl e with any optical waveguide. The last major barrier to SLG-based optical receivers lies in the low responsivity - electrical output per optical input - of GPDs compared to conventional PDs. Here we overcome this shortfall by integrating a photo-thermoelectric GPD with a Si microring resonator. Under critical coupling, we achieve $>$90% light absorption in a $sim$6 $mu$m SLG channel along the Si waveguide. Exploiting the cavity-enhanced light-matter interaction, causing carriers in SLG to reach $sim$400 K for an input power of $sim$0.6 mW, we get a voltage responsivity $sim$90 V/W, demonstrating the feasibility of our approach. Our device is capable of detecting data rates up to 20 Gbit/s, with a receiver sensitivity enabling it to operate at a 10$^{-9}$ bit-error rate, on par with mature semiconductor technology. The natural generation of a voltage rather than a current, removes the need for transimpedance amplification, with a reduction of the energy-per-bit cost and foot-print, when compared to a traditional semiconductor-based receiver.
We report on four-wave mixing in a silicon microring resonator using a self-pumping scheme instead of an external laser. The ring resonator is inserted in an external-loop cavity with a fibered semiconductor amplifier as a source of gain. The silicon microring acts as a filter and we observe lasing in one of the microrings resonances. We study correlations between signal and idler generated beams using a Joint Spectral Density experiment.
Stimulated Brillouin scattering (SBS) has been demonstrated in silicon waveguides in recent years. However, due to the weak interaction between photons and acoustic phonons in these waveguides, long interaction length is typically necessary. Here, we experimentally show that forward stimulated Brillouin scattering in a short interaction length of a 20 um radius silicon microring resonator could give 1.2 dB peak gain at only 10mW coupled pump power. The experimental results demonstrate that both optical and acoustic modes can have efficient interaction in a short interaction length. The observed Brillouin gain varies with coupled pump power in good agreement with theoretical prediction. The work shows the potential of SBS in silicon for moving the demonstrated fiber SBS applications to the integrated silicon photonics platform.
Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communications and for precision metrology, timing and spectroscopy. To date, wide-spanning combs are most often generated by mode-locked lasers or dispersion-engineered resonators with third-order Kerr nonlinearity. An alternative comb generation method uses electro-optic (EO) phase modulation in a resonator with strong second-order nonlinearity, resulting in combs with excellent stability and controllability. Previous EO combs, however, have been limited to narrow widths by a weak EO interaction strength and a lack of dispersion engineering in free-space systems. In this work, we overcome these limitations by realizing an integrated EO comb generator in a thin-film lithium niobate photonic platform that features a large electro-optic response, ultra-low optical loss and highly co-localized microwave and optical felds, while enabling dispersion engineering. Our measured EO frequency comb spans more than the entire telecommunications L-band (over 900 comb lines spaced at ~ 10 GHz), and we show that future dispersion engineering can enable octave-spanning combs. Furthermore, we demonstrate the high tolerance of our comb generator to modulation frequency detuning, with frequency spacing finely controllable over seven orders of magnitude (10 Hz to 100 MHz), and utilize this feature to generate dual frequency combs in a single resonator. Our results show that integrated EO comb generators, capable of generating wide and stable comb spectra, are a powerful complement to integrated Kerr combs, enabling applications ranging from spectroscopy to optical communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا