ﻻ يوجد ملخص باللغة العربية
Let $T(d,r) = (r-1)(d+1)+1$ be the parameter in Tverbergs theorem, and call a partition $mathcal I$ of ${1,2,ldots,T(d,r)}$ into $r$ parts a Tverberg type. We say that $mathcal I$ occurs in an ordered point sequence $P$ if $P$ contains a subsequence $P$ of $T(d,r)$ points such that the partition of $P$ that is order-isomorphic to $mathcal I$ is a Tverberg partition. We say that $mathcal I$ is unavoidable if it occurs in every sufficiently long point sequence. In this paper we study the problem of determining which Tverberg types are unavoidable. We conjecture a complete characterization of the unavoidable Tverberg types, and we prove some cases of our conjecture for $dle 4$. Along the way, we study the avoidability of many other geometric predicates. Our techniques also yield a large family of $T(d,r)$-point sets for which the number of Tverberg partitions is exactly $(r-1)!^d$. This lends further support for Sierksmas conjecture on the number of Tverberg partitions.
A seminal theorem of Tverberg states that any set of $T(r,d)=(r-1)(d+1)+1$ points in $mathbb{R}^d$ can be partitioned into $r$ subsets whose convex hulls have non-empty $r$-fold intersection. Almost any collection of fewer points in $mathbb{R}^d$ can
The long-standing topological Tverberg conjecture claimed, for any continuous map from the boundary of an $N(q,d):=(q-1)(d+1)$-simplex to $d$-dimensional Euclidian space, the existence of $q$ pairwise disjoint subfaces whose images have non-empty $q$
In recent work, M. Schneider and the first author studied a curious class of integer partitions called sequentially congruent partitions: the $m$th part is congruent to the $(m+1)$th part modulo $m$, with the smallest part congruent to zero modulo th
The classical 1966 theorem of Tverberg with its numerous variations was and still is a motivating force behind many important developments in convex and computational geometry as well as the testing ground for methods from equivariant algebraic topol
We study two types of probability measures on the set of integer partitions of $n$ with at most $m$ parts. The first one chooses the random partition with a chance related to its largest part only. We then obtain the limiting distributions of all of