ﻻ يوجد ملخص باللغة العربية
This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum $text{L}_{mathrm{max}}$ needed to achieve a good fit is determined. Then, recent polarization measurements for $gamma p rightarrow pi^{0} p$ from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance-states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel $gamma p rightarrow pi^{0} p$, those are the $N(1680)frac{5}{2}^{+}$ and $Delta(1950)frac{7}{2}^{+}$, contributing to the $F$-waves.
Amplitude and partial wave analyses for pion, eta or kaon photoproduction are discussed in the context of `complete experiments. It is shown that the model-independent helicity amplitudes obtained from at least 8 polarization observables including be
Spin-observables in pseudoscalar meson photoproduction is discussed. This work is complementary to the earlier works on this topic. Here, the reaction amplitude is expressed in Pauli-spin basis which allows to calculate all the observables straightfo
We investigate the properties of the hidden charm pentaquark-like resonances first observed by LHCb in 2015, by measuring the polarization transfer KLL between the incident photon and the outgoing proton in the exclusive photoproduction of J/psi near
Pseudoscalar-meson photoproduction is characterized by four complex reaction amplitudes. A complete set is a minimum theoretical set of observables that allow to determine these amplitudes unambiguously. It is studied whether complete sets remain com
To learn about a physical system of interest, experimental results must be able to discriminate among models. We introduce a geometrical measure to quantify the distance between models for pseudoscalar-meson photoproduction in amplitude space. Experi