ﻻ يوجد ملخص باللغة العربية
At very-high energies (100 TeV - 1 PeV), the small value of Bjorken-x ($le10^{-3}-10^{-7}$) at which the parton distribution functions are evaluated makes the calculation of charm quark production very difficult. The charm quark has mass ($sim$1.5$pm$0.2 GeV) significantly above the $Lambda$$_{QCD}$ scale ($sim$200 MeV), and therefore its production is perturbatively calculable. However, the uncertainty in the data and the calculations cannot exclude some smaller non-perturbative contribution. To evaluate the prompt neutrino flux, one needs to know the charm production cross-section in pN -> c$bar{c}$ X, and hadronization of charm particles. This contribution briefly discusses computation of prompt neutrino flux and presents the strongest limit on prompt neutrino flux from IceCube.
We analyze the IceCube four-year neutrino data in search of a signal from the Fermi bubbles. No signal is found from the bubbles or from their dense shell, even when taking into account the softer background. This imposes a conservative $xi_i<8%$ upp
The existence of diffuse Galactic neutrino production is expected from cosmic ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic ray interac
On 22nd September 2017, the IceCube Collaboration detected a neutrino with energy of about 290 TeV from the direction of the gamma-ray blazar TXS 0506+056, located at a distance of about 1.75 Gpc. During the same time, enhanced gamma-ray flaring was
A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to rej
Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the