ترغب بنشر مسار تعليمي؟ اضغط هنا

The Galaxy End Sequence

94   0   0.0 ( 0 )
 نشر من قبل Stephen Eales Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A common assumption is that galaxies fall in two distinct regions on a plot of specific star-formation rate (SSFR) versus galaxy stellar mass: a star-forming Galaxy Main Sequence (GMS) and a separate region of `passive or `red and dead galaxies. Starting from a volume-limited sample of nearby galaxies designed to contain most of the stellar mass in this volume, and thus being a fair representation of the Universe at the end of 12 billion years of galaxy evolution, we investigate the distribution of galaxies in this diagram today. We show that galaxies follow a strongly curved extended GMS with a steep negative slope at high galaxy stellar masses. There is a gradual change in the morphologies of the galaxies along this distribution, but there is no clear break between early-type and late-type galaxies. Examining the other evidence that there are two distinct populations, we argue that the `red sequence is the result of the colours of galaxies changing very little below a critical value of the SSFR, rather than implying a distinct population of galaxies, and that Herschel observations, which show at least half of early-type galaxies contain a cool interstellar medium, also imply continuity between early-type and late-type galaxies. This picture of a unitary population of galaxies requires more gradual evolutionary processes than the rapid quenching processes needed to to explain two distinct populations. We challenge theorists to reproduce the properties of this `Galaxy End Sequence.



قيم البحث

اقرأ أيضاً

For nearly a century, imaging and spectroscopic surveys of galaxies have given us information about the contents of the universe. We attempt to define the logical endpoint of such surveys by defining not the next galaxy survey, but the final galaxy s urvey at NIR wavelengths; this would be the galaxy survey that exhausts the information content useful for addressing extant questions. Such a survey would require incredible advances in a number of technologies and the survey details will depend on the as yet poorly constrained properties of the earliest galaxies. Using an exposure time calculator, we define nominal surveys for extracting the useful information for three science cases: dark energy cosmology, galaxy evolution, and supernovae. We define scaling relations that trade off sky background, telescope aperture, and focal plane size to allow for a survey of a given depth over a given area. For optimistic assumptions, a 280m telescope with a marginally resolved focal plane of 20 deg$^2$ operating at L2 could potentially exhaust the cosmological information content of galaxies in a 10 year survey. For galaxy evolution (making use of gravitational lensing to magnify the earliest galaxies) and SN, the same telescope would suffice. We discuss the technological advances needed to complete the last galaxy survey. While the final galaxy survey remains well outside of our technical reach today, we present scaling relations that show how we can progress toward the goal of exhausting the information content encoded in the shapes, positions, and colors of galaxies.
Our understanding of the unification of jetted AGN has evolved greatly as jet samples have increased in size. Here, based on the largest-ever sample of over 2000 well-sampled jet spectral energy distributions, we examine the synchrotron peak frequenc y -- peak luminosity plane, and find little evidence for the anti-correlation known as the blazar sequence. Instead, we find strong evidence for a dichotomy in jets, between those associated with efficient or `quasar-mode accretion (strong/type II jets) and those associated with inefficient accretion (weak/type I jets). Type II jets include those hosted by high-excitation radio galaxies, flat-spectrum radio quasars (FSRQ), and most low-frequency-peaked BL Lac objects. Type I jets include those hosted by low-excitation radio galaxies and blazars with synchrotron peak frequency above 10^15 Hz (nearly all BL Lac objects). We have derived estimates of the total jet power for over 1000 of our sources from low-frequency radio observations, and find that the jet dichotomy does not correspond to a division in jet power. Rather, type II jets are produced at all observed jet powers, down to the lowest levels in our sample, while type I jets range from very low to moderately high jet powers, with a clear upper bound at ~10^43 erg/s The range of jet power in each class matches exactly what is expected for efficient (i.e., a few to 100% Eddington) or inefficient (<0.5% Eddington) accretion onto black holes ranging in mass from 10^7-10^9.5 M_sol.
Starburst galaxies are often found to be the result of galaxy mergers. As a result, galaxy mergers are often believed to lie above the galaxy main sequence: the tight correlation between stellar mass and star formation rate. Here, we aim to test this claim. Deep learning techniques are applied to images from the Sloan Digital Sky Survey to provide visual-like classifications for over 340 000 objects between redshifts of 0.005 and 0.1. The aim of this classification is to split the galaxy population into merger and non-merger systems and we are currently achieving an accuracy of 91.5%. Stellar masses and star formation rates are also estimated using panchromatic data for the entire galaxy population. With these preliminary data, the mergers are placed onto the full galaxy main sequence, where we find that merging systems lie across the entire star formation rate - stellar mass plane.
232 - L. R. Bedin 2009
We use 14 orbits of ACS observations to reach the end of the white-dwarf cooling sequence in the globular cluster M4. Our photometry and completeness tests show that the end is located at magnitude m_F606W = 28.5+/-0.1, which implies an age of 11.6+/ -0.6 Gyr (internal errors only). This is consistent with the age from fits to the main sequence turn-off (12.0+/-1.4 Gyr).
We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey (SDSS) and the results from the Galaxy Zoo project. We find that the majority of our local PSG populatio n have neither early- nor late- type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the green valley below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively-evolving bulge-dominated galaxies. Our analysis suggests that it is likely that a local PSG will quickly transform into red, low-mass early-type galaxies as the stellar morphologies of the green PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively-evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the red sequence once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of downsizing where the build-up of smaller galaxies occurs at later epochs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا