ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-surface topologies and low-temperature phases of the filled Skutterudite compounds CeOs$_4$Sb$_{12}$ and NdOs$_4$Sb$_{12}$

165   0   0.0 ( 0 )
 نشر من قبل John Singleton
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MHz conductivity, torque magnetometer and magnetization measurements are reported on single crystals of CeOs$_4$Sb$_{12}$ and NdOs$_4$Sb$_{12}$ using temperatures down to 0.5~K and magnetic fields of up to 60~tesla. The field-orientation dependence of the de Haas-van Alphen and Shubnikov-de Haas oscillations is deduced by rotating the samples about the $[010]$ and $[0bar{1}1]$ directions. The results indicate that NdOs$_4$Sb$_{12}$ has a similar Fermi surface topology to that of the unusual superconductor PrOs$_4$Sb$_{12}$, but with significantly smaller effective masses, supporting the importance of local phonon modes in contributing to the low-temperature heat capacity of NdOs$_4$Sb$_{12}$. By contrast, CeOs$_4$Sb$_{12}$ undergoes a field-induced transition from an unusual semimetal into a high-field, high-temperature state characterized by a single, almost spherical Fermi-surface section. The behavior of the phase boundary and comparisons with models of the bandstructure lead us to propose that the field-induced phase transition in CeOs$_4$Sb$_{12}$ is similar in origin to the well-known $alpha-gamma$ transition in Ce and its alloys.



قيم البحث

اقرأ أيضاً

Anomalous metal-insulator transition observed in filled skutterudite CeOs$_4$Sb$_{12}$ is investigated by constructing the effective tight-binding model with the Coulomb repulsion between f electrons. By using the mean field approximation, magnetic s usceptibilities are calculated and the phase diagram is obtained. When the band structure has a semimetallic character with small electron and hole pockets at $Gamma$ and H points, a spin density wave transition with the ordering vector $mathbf{Q}=(1,0,0)$ occurs due to the nesting property of the Fermi surfaces. Magnetic field enhances this phase in accord with the experiments.
Thermal conductivity measurements were performed on single crystal samples of the superconducting filled skutterudite compounds PrOs$_4$Sb$_{12}$ and PrRu$_4$Sb$_{12}$ both as a function of temperature and magnetic field applied perpendicular to the heat current. In zero magnetic field, the low temperature electronic thermal conductivity of PrRu$_4$Sb$_{12}$ is vanishingly small, consistent with a fully-gapped Fermi surface. For PrOs$_4$Sb$_{12}$, however, we find clear evidence for residual electronic conduction as the temperature tends to zero Kelvin which is consistent with the presence of nodes in the superconducting energy gap. The field dependence of the electronic conductivity for both compounds shows a rapid rise immediately above H$_{c1}$ and significant structure over the entire vortex state. In the fully gapped superconductor PrRu$_4$Sb$_{12}$, this is interpreted in terms of multi-band effects. In PrOs$_4$Sb$_{12}$, we consider the Doppler shift of nodal quasiparticles at low fields and multiband effects at higher fields.
Single crystals of the filled-skutterudite compound NdOs$_4$Sb$_{12}$ have been investigated by means of electrical resistivity, magnetization, and specific heat measurements. The NdOs$_4$Sb$_{12}$ crystals have the LaFe$_4$P$_{12}$-type cubic struct ure with a lattice parameter of 9.3 AA. Possible heavy-fermion behavior is inferred from specific heat measurements, which reveal a large electronic specific heat coefficient $gamma approx 520$ mJ/mol-K$^2$, corresponding to an effective mass $m^* sim$ 98 $m_e$. Features related to a ferromagnetic transition at {$sim$ 0.9 K} can be observed in electrical resistivity, magnetization and specific heat. Conventional Arrott-plot analysis indicates that NdOs$_4$Sb$_{12}$ conforms to mean-field ferromagnetism.
Comprehensive magnetic-field-orientation dependent studies of the susceptibility and de Haas-van Alphen effect have been carried out on single crystals of the filled skutterudites PrOs$_4$As$_{12}$ and LaOs$_4$As$_{12}$ using magnetic fields of up to 40~T. Several peaks are observed in the low-field susceptibility of PrOs$_4$As$_{12}$, corresponding to cascades of metamagnetic transitions separating the low-field antiferromagnetic and high-field paramagnetic metal (PMM) phases. The de Haas-van Alphen experiments show that the Fermi-surface topologies of PrOs$_4$As$_{12}$ in its PMM phase and LaOs$_4$As$_{12}$ are very similar. In addition, they are in reasonable agreement with the predictions of bandstructure calculations for LaOs$_4$As$_{12}$ on the PrOs$_4$As$_{12}$ lattice. Both observations suggest that the Pr 4$f$ electrons contribute little to the number of itinerant quasiparticles in the PMM phase. However, whilst the properties of LaOs$_4$As$_{12}$ suggest a conventional nonmagnetic Fermi liquid, the effects of direct exchange and electron correlations are detected in the PMM phase of PrOs$_4$As$_{12}$. For example, the quasiparticle effective masses in PrOs$_4$As$_{12}$ are found to decrease with increasing field, probably reflecting the gradual suppression of magnetic fluctuations associated with proximity to the low-temperature, low-field antiferromagnetic state.
The filled skutterudite compound PrOsSb{} exhibits superconductivity below a critical temperature $T_mathrm{c} = 1.85$ K that develops out of a nonmagnetic heavy Fermi liquid with an effective mass $m^{*} approx 50 m_mathrm{e}$, where $m_mathrm{e}$ i s the free electron mass. Analysis of magnetic susceptibility, specific heat, electrical resistivity and inelastic neutron scattering measurements within the context of a cubic crystalline electric field yields a Pr$^{3+}$ energy level scheme that consists of a $Gamma_{3}$ nonmagnetic doublet ground state that carries an electric quadrupole moment, a low lying $Gamma_{5}$ triplet excited state at $sim 10$ K, and $Gamma_{4}$ triplet and $Gamma_{1}$ singlet excited states at much higher temperatures. The superconducting state appears to be unconventional and to consist of two distinct superconducting phases. An ordered phase of magnetic or quadrupolar origin occurs at high fields and low temperatures, suggesting that the superconductivity may occur in the vicinity of a magnetic or electric quadrupolar quantum critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا