ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal stability of two-dimensional traditional semiconductors

102   0   0.0 ( 0 )
 نشر من قبل Damien West
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interest in two dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac Fermion in graphene, but also as a new paradigm in which stacking layers of distinct two dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultra-thin limit all of the traditional binary semi-conductors studied (a series of 26 semiconductors) stabilize in a two dimensional double layer honeycomb (DLHC) structure, as opposed to the wurtzite or zinc-blende structures associated with three dimensional bulk. Not only does this greatly increase the landscape of two-dimensional materials, but it is shown that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

قيم البحث

اقرأ أيضاً

430 - Y. Murai , S. Zhang , T. Hotta 2021
We have developed a simple and straightforward way to realize controlled post-doping towards 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic energy dopant beams and a high-flux chalcogen beam at the same time, leading t o substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. Electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change, p-type action with more than two orders of magnitude increase in on current. Position-selective doping has also been demonstrated by the post-doping toward TMDs with a patterned mask on the surface. The post-doping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.
The anisotropic nature of the new two-dimensional (2D) material phosphorene, in contrast to other 2D materials such as graphene and transition metal dichalcogenide (TMD) semiconductors, allows excitons to be confined in a quasi-one-dimensional (1D) s pace predicted in theory, leading to remarkable phenomena arising from the reduced dimensionality and screening. Here, we report a trion (charged exciton) binding energy of 190 meV in few-layer phosphorene at room temperature, which is nearly one to two orders of magnitude larger than those in 2D TMD semiconductors (20-30 meV) and quasi-2D quantum wells (1-5 meV). Such a large binding energy has only been observed in truly 1D materials such as carbon nanotubes, whose optoelectronic applications have been severely hurdled by their intrinsically small optical cross-sections. Phosphorene offers an elegant way to overcome this hurdle by enabling quasi-1D excitonic and trionic behaviors in a large 2D area, allowing optoelectronic integration. We experimentally validated the quasi-1D nature of excitonic and trionic dynamics in phospherene by demonstrating completely linearly polarized light emission from excitons and trions. The implications of the extraordinarily large trion binding energy in a higher-than-one-dimensional material are far-reaching. It provides a room-temperature 2D platform to observe the fundamental many-body interactions in the quasi-1D region. The strong photoluminescence emission in phosphorene has been electrically tuned over a large spectral range at room temperature, which opens a new route for tunable light sources.
Out-of-plane vibrations are considered as the dominant factor limiting the intrinsic carrier mobility of suspended two-dimensional materials at low carrier concentrations. Anharmonic coupling between in-plane and flexural phonon modes is usually excl uded from the consideration. Here we present a theory for the electron-phonon scattering, in which the anharmonic coupling between acoustic phonons is systematically taken into account. Our theory is applied to the typical group V two-dimensional semiconductors: hexagonal phosphorus, arsenic, and antimony. We find that the role of the flexural modes is essentially suppressed by their coupling with in-plane modes. At dopings lower than 10$^{12}$ cm$^{-2}$ the mobility reduction does not exceed 30%, being almost independent of the concentration. Our findings suggest that compared to in-plane phonons, flexural phonons are considerably less important in the electronic transport of two-dimensional semiconductors, even at low carrier concentrations.
287 - R. R. Nair , W. C. Ren , R. Jalil 2010
We report a stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical and transport studies show that the material is qualitatively different from the known graphene-based nonstoic hiometric derivatives. Fluorographene is a high-quality insulator (resistivity >10^12 Ohm per square) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting Youngs modulus of 100 N/m and sustaining strains of 15%. Fluorographene is inert and stable up to 400C even in air, similar to Teflon.
Two-dimensional (2D) antimony, so-called antimonene, can form antimonene oxide when exposed to air. We present different types of single- and few-layer antimony oxide structures, based on density functional theory (DFT) calculations. Depending on sto ichiometry and bonding type, these novel 2D layers have different structural stability and electronic properties, ranging from topological insulators to semiconductors with direct and indirect band gaps between 2.0 and 4.9 eV. We discuss their vibrational properties and Raman spectra for experimental identification of the predicted structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا