ﻻ يوجد ملخص باللغة العربية
We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from HST/ACS and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts $0.4 lesssim z lesssim 0.7$, lying systematically below the size-mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly-evolved descendants. We exploit the magnifying effect of lensing to investigate the structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two Sersic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. We also find that the sources can be characterised by red-to-blue colour gradients as a function of radius which are stronger at low redshift -- indicative of ongoing accretion -- but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are predominantly associated with clusters.
We present an exploration of the mass structure of a sample of 12 strongly lensed massive, compact early-type galaxies at redshifts $zsim0.6$ to provide further possible evidence for their inside-out growth. We obtain new ESI/Keck spectroscopy and in
We present high spatial resolution imaging of the CO(1-0) line from the Karl G. Jansky Very Large Array (VLA) of COSMOS27289, a massive, compact star forming galaxy at z=2.234. This galaxy was selected to be structurally similar to z~2 passive galaxi
In this review, I discuss the use of galaxy-galaxy weak lensing measurements to study the masses of dark matter halos in which galaxies reside. After summarizing how weak gravitational lensing measurements can be interpreted in terms of halo mass, I
Observationally, there are a small fraction GRBs prompt emission observed by Fermi/GBM that are composed of two pulses. Occasionally, the cosmological distance of GRB may be lensed when a high mass astrophysical object reside in path between GRB sour
Recently, the LIGO-Virgo Collaboration (LVC) concluded that there is no evidence for lensed gravitational waves (GW) in the first half of the O3 run, claiming We find the observation of lensed events to be unlikely, with the fractional rate at $mu>2$