ترغب بنشر مسار تعليمي؟ اضغط هنا

Isotope effect in superconducting n-doped SrTiO$_3$

76   0   0.0 ( 0 )
 نشر من قبل Adrien Stucky
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the influence on the superconducting critical temperature $T_c$ in doped SrTiO$_3$ of the substitution of the natural $^{16}$O atoms by the heavier isotope $^{18}$O. We observe that for a wide range of doping this substitution causes a strong ($sim 50 %$) enhancement of $T_c$. Also the magnetic critical field $H_{c2}$ is increased by a factor $sim 2$. Such a strong impact on $T_c$ and $H_{c2}$, with a sign opposite to conventional superconductors, is unprecedented. The observed effect could be the consequence of strong coupling of the doped electrons to lattice vibrations (phonons), a notion which finds support in numerous optical and photo-emission studies. The unusually large size of the observed isotope effect supports a recent model for superconductivity in these materials based on strong coupling to the ferroelectric soft modes of SrTiO$_{3}$.



قيم البحث

اقرأ أيضاً

Strontium titanate is a low-temperature, non-Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of supe rconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO$_{3}$ embedded in undoped SrTiO$_{3}$. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperature $T_{c}$ $gtrsim$ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Our results emphasize that the anisotropic dielectric properties of SrTiO$_{3}$ are important for its superconductivity, and need to be considered in any theory of the mechanism of the superconductivity.
We describe the transport properties of mesoscopic devices based on the two dimensional electron gas (2DEG) present at the LaAlO$_3$/SrTiO$_3$ interface. Bridges with lateral dimensions down to 500~nm were realized using electron beam lithography. Th eir detailed characterization shows that processing and confinement do not alter the transport parameters of the 2DEG. The devices exhibit superconducting behavior tunable by electric field effect. In the normal state, we measured universal conductance fluctuations, signature of phase-coherent transport in small structures. The achievement of reliable lateral confinement of the 2DEG opens the way to the realization of quantum electronic devices at the LaAlO$_3$/SrTiO$_3$ interface.
The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low defect density. Using hybrid molecular beam epitaxy (MBE), SrTiO$_3$ films with low-temperature mobility exceeding 42,000 cm$^2$V$^{-1}$s$^ {-1}$ at low carrier density of 3 x 10$^{17}$ cm$^{-3}$ were achieved. A sudden and sharp decrease in residual resistivity accompanied by an enhancement in the superconducting transition temperature were observed across the second Lifshitz transition (LT) where the third band becomes occupied, revealing dominant intra-band scattering. These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferrodistortive (AFD) transition and the temperature-dependence of the Hall scattering factor. Using hybrid MBE growth, phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting quantum interference device imaging, we provide critical insights into the important role of inter- vs intra-band scattering and of AFD domain walls on normal-state and superconducting properties of SrTiO$_3$.
Recently, the discovery of room-temperature superconductivity (SC) was experimentally realized in the fcc phase of LaH$_{10}$ under megabar pressure. Specifically, the isotope effect of $T_{rm c}$ was measured by the replacement of hydrogen (H) with deuterium (D), demonstrating a driving role of phonons in the observed room-temperature SC. Herein, based on the first-principles calculations within the harmonic approximation, we reveal that (i) the identical electron-phonon coupling constants of fcc LaH$_{10}$ and LaD$_{10}$ decrease monotonously with increasing pressure and (ii) the isotope effect of $T_{rm c}$ is nearly proportional to $M^{-{alpha}}$ ($M$: ionic mass) with ${alpha}$ ${approx}$ 0.465, irrespective of pressure. The predicted value of ${alpha}$ agrees well with the experimental one (${alpha}=0.46$) measured at around 150 GPa. Thus, our findings provide a theoretical confirmation of the conventional electron-phonon coupling mechanism in a newly discovered room-temperature superconductor of compressed LaH$_{10}$.
94 - P. K. Rout , E. Maniv , Y. Dagan 2017
We measure the gate voltage ($V_g$) dependence of the superconducting properties and the spin-orbit interaction in the (111)-oriented LaAlO$_3$/SrTiO$_3$ interface. Superconductivity is observed in a dome-shaped region in the carrier density-temperat ure phase diagram with the maxima of superconducting transition temperature $T_c$ and the upper critical fields lying at the same $V_g$. The spin-orbit interaction determined from the superconducting parameters and confirmed by weak-antilocalization measurements follows the same gate voltage dependence as $T_c$. The correlation between the superconductivity and spin-orbit interaction as well as the enhancement of the parallel upper critical field, well beyond the Chandrasekhar-Clogston limit suggest that superconductivity and the spin-orbit interaction are linked in a nontrivial fashion. We propose possible scenarios to explain this unconventional behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا