ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to extend the recent work of Paul & Bandyopadhyay [Astrophys. Space Sci. 361, 172(2016)] on the existence of different dust ion acoustic solitary structures in an unmagnetized collisionless dusty plasma consisting of negatively charged static dust grains, adiabatic warm ions, nonthermal electrons and isothermal positrons in a more generalized form by considering nonthermal positrons instead of isothermal positrons. The present system supports both positive and negative potential double layers, coexistence of solitary waves of both polarities and positive potential supersolitons. The qualitative and the quantitative changes in existence domains of different solitary structures which occur for the presence of nonthermal positrons have been presented in comparison with the results of Paul & Bandyopadhyay [Astrophys. Space Sci. 361, 172(2016)]. The formation of supersoliton structures and their limitations have been analyzed with the help of phase portraits of the dynamical system corresponding to the dust ion acoustic solitary structures. Phase portrait analysis clearly indicates a smooth transition between soliton and supersoliton.
Arbitrary amplitude dust acoustic solitary structures have been investigated in a four component multi-species plasma consisting of negatively charged dust grains, nonthermal ions, isothermally distributed electrons and positrons including the effect
The Sagdeev pseudo-potential technique and the analytic theory developed by Das et al. [J. Plasma Phys. 78, 565 (2012)] have been used to investigate the dust ion acoustic solitary structures at the acoustic speed in a collisionless unmagnetized dust
Employing the Sagdeev pseudo-potential technique the ion acoustic solitary structures have been investigated in an unmagnetized collisionless plasma consisting of adiabatic warm ions, nonthermal electrons and isothermal positrons. The qualitatively d
We have used the Sagdeev pseudo-potential technique to investigate the arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of adiabatic warm ions, isothermal cold electrons and no
Sardar et al. [Phys. Plasmas 23, 073703 (2016)] have studied the stability of small amplitude dust ion acoustic solitary waves in a collisionless unmagnetized electron - positron - ion - dust plasma. They have derived a Kadomtsev Petviashvili (KP) eq