ﻻ يوجد ملخص باللغة العربية
In this paper a closed form expression for the number of tilings of an $ntimes n$ square border with $1times 1$ and $2times1$ cuisenaire rods is proved using a transition matrix approach. This problem is then generalised to $mtimes n$ rectangular borders. The number of distinct tilings up to rotational symmetry is considered, and closed form expressions are given, in the case of a square border and in the case of a rectangular border. Finally, the number of distinct tilings up to dihedral symmetry is considered, and a closed form expression is given in the case of a square border.
Let K_4^3-2e denote the hypergraph consisting of two triples on four points. For an integer n, let t(n, K_4^3-2e) denote the smallest integer d so that every 3-uniform hypergraph G of order n with minimum pair-degree delta_2(G) geq d contains floor{n
Komlos [Komlos: Tiling Turan Theorems, Combinatorica, 2000] determined the asymptotically optimal minimum-degree condition for covering a given proportion of vertices of a host graph by vertex-disjoint copies of a fixed graph H, thus essentially exte
Partitioning a set into similar, if not, identical, parts is a fundamental research topic in combinatorics. The question of partitioning the integers in various ways has been considered throughout history. Given a set ${x_1, ldots, x_n}$ of integers
Komlos [Tiling Turan theorems, Combinatorica, 20,2 (2000), 203{218] determined the asymptotically optimal minimum degree condition for covering a given proportion of vertices of a host graph by vertex-disjoint copies of a fixed graph. We show that th
A fundamental result of Kuhn and Osthus [The minimum degree threshold for perfect graph packings, Combinatorica, 2009] determines up to an additive constant the minimum degree threshold that forces a graph to contain a perfect H-tiling. We prove a de