ﻻ يوجد ملخص باللغة العربية
An important constraint for galaxy evolution models is how much gas resides in galaxies, in particular at the peak of star formation z=1-3. We attempt a novel approach by letting long-duration Gamma Ray Bursts (LGRBs) x-ray their host galaxies and deliver column densities to us. This requires a good understanding of the obscurer and biases introduced by incomplete follow-up observations. We analyse the X-ray afterglow of all 844 Swift LGRBs to date for their column density $N_H$. To derive the population properties we propagate all uncertainties in a consistent Bayesian methodology. The $N_H$ distribution covers the $10^{20-23}mathrm{cm}^{-2}$ range and shows no evolutionary effect. Higher obscurations, e.g. Compton-thick columns, could have been detected but are not observed. The $N_H$ distribution is consistent with sources randomly populating a ellipsoidal gas cloud of major axis $N_H^text{major}=10^{23}mathrm{cm}^{-2}$ with 0.22 dex intrinsic scatter between objects. The unbiased SHOALS survey of afterglows and hosts allows us to constrain the relation between Spitzer-derived stellar masses and X-ray derived column densities $N_H$. We find a well-constrained powerlaw relation of $N_H=10^{21.7}mathrm{cm}^{-2}timesleft(M_{star}/10^{9.5}M_{odot}right)^{1/3}$, with 0.5 dex intrinsic scatter between objects. The Milky Way and the Magellanic clouds also follow this relation. From the geometry of the obscurer, its stellar mass dependence and comparison with local galaxies we conclude that LGRBs are primarily obscured by galaxy-scale gas. Ray tracing of simulated Illustris galaxies reveals a relation of the same normalisation, but a steeper stellar-mass dependence and mild redshift evolution. Our new approach provides valuable insight into the gas residing in high-redshift galaxies.
The torus obscurer of Active Galactic Nuclei (AGN) is poorly understood in terms of its density, substructure and physical mechanisms. Large X-ray surveys provide model boundary constraints, for both Compton-thin and Compton-thick levels of obscurati
The nuclear obscurer of Active Galactic Nuclei (AGN) is poorly understood in terms of its origin, geometry and dynamics. We investigate whether physically motivated geometries emerging from hydro-radiative simulations can be differentiated with X-ray
We analyze the early X-ray flares in the GRB flare-plateau-afterglow (FPA) phase observed by Swift-XRT. The FPA occurs only in one of the seven GRB subclasses: the binary-driven hypernovae (BdHNe). This subclass consists of long GRBs with a carbon-ox
The nucleus of the active galaxy NGC 5548 was the target of two intensive spectroscopic monitoring campaigns at X-ray, ultraviolet (UV), and optical frequencies in 2013/14. These campaigns detected the presence of a massive obscuration event. In 2016
We study an extensive sample of 87 GRBs for which there are well sampled and simultaneous optical and X-ray light-curves. We extract the cleanest possible signal of the afterglow component, and compare the temporal behaviors of the X-ray light-curve,