ترغب بنشر مسار تعليمي؟ اضغط هنا

$Lambda_cSigma_cpi$ coupling and $Sigma_c rightarrowLambda_c pi$ decay in lattice QCD

75   0   0.0 ( 0 )
 نشر من قبل Kadir Utku Can
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the $Lambda_cSigma_cpi$ coupling constant ($G_{Lambda_c Sigma_c pi}$) and the width of the strong decay $Sigma_c rightarrowLambda_c pi$ in 2+1 flavor lattice QCD on four different ensembles with pion masses ranging from 700 MeV to 300 MeV. We find $G_{Lambda_c Sigma_c pi}=18.332(1.476)_{rm{stat.}}(2.171)_{rm{syst.}}$ and the decay width $Gamma(Sigma_c rightarrowLambda_c pi)=1.65(28)_{rm{stat.}}(30)_{rm{syst.}}$~MeV on the physical quark-mass point, which is in agreement with the recent experimental determination.

قيم البحث

اقرأ أيضاً

We determine $D$ and $D_s$ decay constants from lattice QCD with 2% errors, 4 times better than experiment and previous theory: $f_{D_s}$ = 241(3) MeV, $f_D$ = 207(4) MeV and $f_{D_s}/f_D$ = 1.164(11). We also obtain $f_K/f_{pi}$ = 1.189(7) and $(f _{D_s}/f_D)/(f_K/f_{pi})$ = 0.979(11). Combining with experiment gives $V_{us}$=0.2262(14) and $V_{cs}/V_{cd}$ of 4.43(41). We use a highly improved quark discretization on MILC gluon fields that include realistic sea quarks fixing the $u/d, s$ and $c$ masses from the $pi$, $K$, and $eta_c$ meson masses. This allows a stringent test against experiment for $D$ and $D_s$ masses for the first time (to within 7 MeV).
We determine the decay constants of the pi and K mesons on gluon field configurations from the MILC collaboration including u, d, s and c quarks. We use three values of the lattice spacing and u/d quark masses going down to the physical value. We use the w_0 parameter to fix the relative lattice spacing and f_pi to fix the overall scale. This allows us to obtain a value for f{K^+}/f{pi^+} = 1.1916(21). Comparing to the ratio of experimental leptonic decay rates gives |Vus| = 0.22564(28){Br(K^+)}(20){EM}(40){latt}(5){Vud} and the test of unitarity of the first row of the Cabibbo-Kobayashi-Maskawa matrix: |Vud|^2+|Vus|^2+|Vub|^2 - 1 = 0.00009(51).
140 - A. Bazavov , C. Bernard , C. DeTar 2019
We use lattice QCD to calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ for the semileptonic decay $B_sto Kell u$. Our calculation uses six MILC asqtad 2+1 flavor gauge-field ensembles with three lattice spacings. At the smallest and largest latti ce spacing the light-quark sea mass is set to 1/10 the strange-quark mass. At the intermediate lattice spacing, we use four values for the light-quark sea mass ranging from 1/5 to 1/20 of the strange-quark mass. We use the asqtad improved staggered action for the light valence quarks, and the clover action with the Fermilab interpolation for the heavy valence bottom quark. We use SU(2) hard-kaon heavy-meson rooted staggered chiral perturbation theory to take the chiral-continuum limit. A functional $z$ expansion is used to extend the form factors to the full kinematic range. We present predictions for the differential decay rate for both $B_sto Kmu u$ and $B_sto Ktau u$. We also present results for the forward-backward asymmetry, the lepton polarization asymmetry, ratios of the scalar and vector form factors for the decays $B_sto Kell u$ and $B_sto D_s ell u$. Our results, together with future experimental measurements, can be used to determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{ub}|$.
We present a model-independent calculation of hadron matrix elements for all dimension-six operators associated with baryon number violating processes using lattice QCD. The calculation is performed with the Wilson quark action in the quenched approx imation at $beta=6/g^2=6.0$ on a $28^2times 48times 80$ lattice. Our results cover all the matrix elements required to estimate the partial lifetimes of (proton,neutron)$to$($pi,K,eta$) +(${bar u},e^+,mu^+$) decay modes. We point out the necessity of disentangling two form factors that contribute to the matrix element; previous calculations did not make the separation, which led to an underestimate of the physical matrix elements. With a correct separation, we find that the matrix elements have values 3-5 times larger than the smallest estimates employed in phenomenological analyses of the nucleon decays, which could give strong constraints on several GUT models. We also find that the values of the matrix elements are comparable with the tree-level predictions of chiral lagrangian.
We calculate the form factors of the $K to pi l u$ semileptonic decays in three-flavor lattice QCD, and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11fm with four pion masses covering 290-540 MeV and a strange quark mass m_s close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on m_s and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f_+(0) = 0.9636(36)(+57/-35), and observe reasonable agreement of their shape with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا