ﻻ يوجد ملخص باللغة العربية
It is simply anticipated that in a strong magnetic configuration, the Landau quantization ceases the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived. To closely access this naive observation, we explicitly compute the charged pion-loop in the magnetic field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho meson as well as its mass.Due to the dimensional reduction induced by the magnetic field (violation of the Lorentz invariance), the polarization (spin $s_z=-1,0,+1$) modes of the rho meson, as well as the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. To see the significance of the reduction effect, we simply take the lowest-Landau level approximation to analyze the spin-dependent rho masses and widths. We find that the fate of the rho meson may be more complicated because of the magnetic-dimensional reduction: as the magnetic field increases, the rho width for the spin $s_z=0$ starts to develop, reach a peak, to be vanishing at the critical magnetic field to which the folklore refers. On the other side, the decay rates of the other rhos for $s_z=-1,+1$ monotonically increase as the magnetic field develops. The correlation between the polarization dependence and the Landau-level truncation is also addressed.
Properties of $rho$-meson in symmetric nuclear matter are investigated in a light-front constituent quark model (LFCQM), using the in-medium inputs calculated by the quark-meson coupling (QMC) model. The LFCQM used in this study was already applied f
A detailed study of the analytic structure of 1-loop self energy graphs for neutral and charged $rho$ mesons is presented at finite temperature and arbitrary magnetic field using the real time formalism of thermal field theory. The imaginary part of
We present a calculation of the electromagnetic form factors of the $rho^+$ meson. Our formalism is based on the point-form of relativistic quantum mechanics. Electron-$rho$-meson scattering is formulated as a coupled-channel problem for a Bakamjian-
We determine the magnetic dipole moment of the rho meson using preliminary data from the BaBar Collaboration for the $e^+ e^- to pi^+ pi^- 2 pi^0$ process, in the center of mass energy range from 0.9 to 2.2 GeV. We describe the $gamma^* to 4pi$ verte
We find a general expression for the one-loop self-energy function of neutral $rho$-meson due to $pi^+pi^-$ intermediate state in a background magnetic field, valid for arbitrary magnitudes of the field. The pion propagator used in this expression is