ترغب بنشر مسار تعليمي؟ اضغط هنا

PandaX-III: Searching for Neutrinoless Double Beta Decay with High Pressure $^{136}$Xe Gas Time Projection Chambers

80   0   0.0 ( 0 )
 نشر من قبل Ke Han
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Searching for the Neutrinoless Double Beta Decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (Particle And Astrophysical Xenon Experiment III) will search for the NLDBD of $^{136}$Xe at the China Jin Ping underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% $^{136}$Xe enriched gas operated at 10 bar. Fine pitch micro-pattern gas detector (Microbulk Micromegas) will be used at both ends of the TPC for the charge readout with a cathode in the middle. Charge signals can be used to reconstruct tracks of NLDBD events and provide good energy and spatial resolution. The detector will be immersed in a large water tank to ensure $sim$5 m of water shielding in all directions. The second phase, a ton-scale experiment, will consist of five TPCs in the same water tank, with improved energy resolution and better control over backgrounds.



قيم البحث

اقرأ أيضاً

The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. Out of its 50$,$t total natural xenon inventory, 40$,$t will be the active target of a time p rojection chamber which thus contains about 3.6 t of $^{136}$Xe. Here, we show that its projected half-life sensitivity is $2.4times10^{27},$yr, using a fiducial volume of 5t of natural xenon and 10$,$yr of operation with a background rate of less than 0.2$~$events/(t$cdot$yr) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $^{136}$Xe.
148 - J Galan , X Chen , H Du 2019
The PandaX-III experiment plans to search for neutrinoless double beta decay (0$ ubetabeta$) of $^{136}$Xe in the China JinPing underground Laboratory (CJPL). The experiment will use a high pressure gaseous Time Projection Chamber (TPC) to register b oth the energy and the electron track topology of an event. This article is devoted to the software side of the experiment. As software tool we use REST, a framework developed for the reconstruction and simulation of TPC-based detector systems. We study the potential for background reduction by introducing appropiate parameters based on the properties of 0$ ubetabeta$ events. We exploit for the first time not only the energy density of the electron track-ends, but also the electron scattering angles produced by an electron near the end of its trajectory. To implement this, we have added new algorithms for detector signal and track processing inside REST. Their assessment shows that background can be reduced by about 7 orders of magnitude while keeping 0$ ubetabeta$ efficiency above 20% for the PandaX-III baseline readout scheme, a 2-dimensional 3mm-pitch stripped readout. More generally, we use the potential of REST to handle 2D/3D data to assess the impact on signal-to-background significance at different detector granularities, and to validate the PandaX-III baseline choice. Finally, we demonstrate the potential to discriminate surface background events generated at the readout plane in the absence of $t_o$, by making use of event parameters related with the diffusion of electrons.
In the search for the neutrinoless double beta decay of $^{136}$Xe, a high pressure xenon time projection chamber (HPXe-TPC) has two advantages over liquid xenon TPCs: a better energy resolution and the access to topological features, which may provi de extra discrimination from background events. The PandaX-III experiment has recently proposed a 200 kg HPXe-TPC based on Micromegas readout planes, to be located at the Jinping Underground Laboratory in China. Its detection concept is based on two results obtained within the T-REX project: Micromegas readouts can be built with extremely low levels of radioactivity; and the operation in xenon-trimethylamine at 10 bar in realistic experimental conditions has proven an energy resolution of 3% FWHM at the region of interest. In this work, two discrimination methods are applied to simulated signal and background data in a generic 200 kg HPXe-TPC, based on two well-known algorithms of graph theory: the identification of connections and the search for the longest path. Rejection factors greater than 100 are obtained for small pixel sizes and a signal efficiency of 40%. Moreover, a new observable (the blob charge density) rejects better surface contaminations, which makes the use of a trigger signal ($T_0$) not imperative in this experiment.
We report the Neutrino-less Double Beta Decay (NLDBD) search results from PandaX-II dual-phase liquid xenon time projection chamber. The total live time used in this analysis is 403.1 days from June 2016 to August 2018. With NLDBD-optimized event sel ection criteria, we obtain a fiducial mass of 219 kg of natural xenon. The accumulated xenon exposure is 242 kg$cdot$yr, or equivalently 22.2 kg$cdot$yr of $^{136}$Xe exposure. At the region around $^{136}$Xe decay Q-value of 2458 keV, the energy resolution of PandaX-II is 4.2%. We find no evidence of NLDBD in PandaX-II and establish a lower limit for decay half-life of 2.4 $ times 10^{23} $ yr at the 90% confidence level, which corresponds to an effective Majorana neutrino mass $m_{beta beta} < (1.3 - 3.5)$ eV. This is the first NLDBD result reported from a dual-phase xenon experiment.
125 - Yuan Mei , Xiangming Sun , Nu Xu 2020
We propose a novel charge sensing concept for high-pressure Time Projection Chamber (TPC) to search for Neutrinoless Double-Beta Decay (NLDBD) with ton-scale isotope mass and beyond. A meter-sized plane, tiled with an array of CMOS integrated sensors called Topmetal that directly collect charge without gas avalanche gain, is to be deployed into a high-pressure gaseous TPC with working gases containing suitable NLDBD candidate isotopes such as Xe-136 and Se-82. The Topmetal sensor has an electronic noise <30 e- per pixel, which allows the detector to reach <1% FWHM energy resolution at the NLDBD Q-value for both Xe-136 and 82SeF6 gases by measuring ionization charges alone. The elimination of charge avalanche gain allows the direct sensing of slow-drifting ions, which enables the use of highly electronegative gas SeF6 in which free electrons do not exist. It supports the swapping of working gases without hardware modification, which is a unique way to validate signals against radioactive backgrounds. Since the sensor manufacturing and plane assembling could leverage unaltered industrial mass-production processes, stability, uniformity, scalability, and cost-effectiveness that are required for ton-scale experiments could all be reached. The strengths of TPC such as 3D ionization tracking and decay daughter tagging are retained. This development could lead to a competitive NLDBD experiment at and above ton-scale. The conceptual considerations, simulations, and initial prototyping are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا