ترغب بنشر مسار تعليمي؟ اضغط هنا

A reconnection-driven model of the hard X-ray loop-top source from flare 2004-Feb-26

283   0   0.0 ( 0 )
 نشر من قبل Dana Longcope
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A compact X-class flare on 2004-Feb-26 showed a concentrated source of hard X-rays at the tops of the flares loops. This was analyzed in previous work (Longcope et al. 2010), and interpreted as plasma heated and compressed by slow magnetosonic shocks generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. These simulations corroborate the prior hypothesis that slow mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, but at lower temperatures. X-ray light curves and spectra are synthesized by convolving the results from a single TFT simulation with the rate at which flux is reconnected, as measured through motion of flare ribbons, for example. These agree well with light curves observed by RHESSI and GOES and spectra from RHESSI. An image created from a superposition of TFT model runs resembles one produced from RHESSI observations. This suggests that the HXR loop-top source, at least the one observed in this flare, could be the result of slow magnetosonic shocks produced in fast reconnection models like Petscheks.

قيم البحث

اقرأ أيضاً

We present a quantitative model of the magnetic energy stored and then released through magnetic reconnection for a flare on 26 Feb 2004. This flare, well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only for a brief, early p hase. Throughout the main period of energy release there is a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare loops. Our model describes the heating and compression of such a source by localized, transient magnetic reconnection. It is a three-dimensional generalization of the Petschek model whereby Alfven-speed retraction following reconnection drives supersonic inflows parallel to the field lines, which form shocks heating, compressing, and confining a loop-top plasma plug. The confining inflows provide longer life than a freely-expanding or conductively-cooling plasma of similar size and temperature. Superposition of successive transient episodes of localized reconnection across a current sheet produces an apparently persistent, localized source of high-temperature emission. The temperature of the source decreases smoothly on a time scale consistent with observations, far longer than the cooling time of a single plug. Built from a disordered collection of small plugs, the source need not have the coherent jet-like structure predicted by steady-state reconnection models. This new model predicts temperatures and emission measure consistent with the observations of 26 Feb 2004. Furthermore, the total energy released by the flare is found to be roughly consistent with that predicted by the model. Only a small fraction of the energy released appears in the super-hot source at any one time, but roughly a quarter of the flare energy is thermalized by the reconnection shocks over the course of the flare. All energy is presumed to ultimately appear in the lower-temperature T<20 MK, post-flare loops.
Super-hot looptop sources, detected in some large solar flares, are compact sources of HXR emission with spectra matching thermal electron populations exceeding 30 megakelvins. High observed emission measure, as well as inference of electron thermali zation within the small source region, both provide evidence of high densities at the looptop; typically more than an order of magnitude above ambient. Where some investigators have suggested such density enhancement results from a rapid enhancement in the magnetic field strength, we propose an alternative model, based on Petschek reconnection, whereby looptop plasma is heated and compressed by slow magnetosonic shocks generated self-consistently through flux retraction following reconnection. Under steady conditions such shocks can enhance density by no more than a factor of four. These steady shock relations (Rankine-Hugoniot relations) turn out to be inapplicable to Petscheks model owing to transient effects of thermal conduction. The actual density enhancement can in fact exceed a factor of ten over the entire reconnection outflow. An ensemble of flux tubes retracting following reconnection at an ensemble of distinct sites will have a collective emission measure proportional to the rate of flux tube production. This rate, distinct from the local reconnection rate within a single tube, can be measured separately through flare ribbon motion. Typical flux transfer rates and loop parameters yield emission measures comparable to those observed in super-hot sources.
Numerical simulations of the helical ($m!=!1$) kink instability of an arched, line-tied flux rope demonstrate that the helical deformation enforces reconnection between the legs of the rope if modes with two helical turns are dominant as a result of high initial twist in the range $Phigtrsim6pi$. Such reconnection is complex, involving also the ambient field. In addition to breaking up the original rope, it can form a new, low-lying, less twisted flux rope. The new flux rope is pushed downward by the reconnection outflow, which typically forces it to break as well by reconnecting with the ambient field. The top part of the original rope, largely rooted in the sources of the ambient flux after the break-up, can fully erupt or be halted at low heights, producing a failed eruption. The helical current sheet associated with the instability is squeezed between the approaching legs, temporarily forming a double current sheet. The leg-leg reconnection proceeds at a high rate, producing sufficiently strong electric fields that it would be able to accelerate particles. It may also form plasmoids, or plasmoid-like structures, which trap energetic particles and propagate out of the reconnection region up to the top of the erupting flux rope along the helical current sheet. The kinking of a highly twisted flux rope involving leg-leg reconnection can explain key features of an eruptive but partially occulted solar flare on 18 April 2001, which ejected a relatively compact hard X-ray and microwave source and was associated with a fast coronal mass ejection.
We describe observations of a white-light flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray sources.For this purpos e we use hard X-ray images from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI), and optical images at 6173 AA from the Solar Dynamics Observatory (SDO). We find that the centroids of the impulsive-phase emissions in white light and hard X-rays (30-80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0.2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions, as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 AA image from the Solar-Terrestrial RElations Observatory (STEREO-B) spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 AA) of 305 pm 170 km and 195 pm 70 km, respectively, for the centroids of the hard X-ray (HXR) and white light (WL) footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 AA and the ~40 keV photons observed, respectively.
We present the results of the observations of the giant bursts from the X-ray pu lsar A0535+26 made by HEXE onboard Mir-Kvant in April 1989, November 1993 and February 1994. The pulse periods were measured, pulse profiles in different energy bands we re produced, and their variability was investigated. The power density spectra (PDS) in 2x10^(-3)-1 Hz range is presented, which shape is typical for flicker-noise processes, usually observed in black hole candidates. The noise rms grows with energy from ~20% at 20 keV to ~30% at 80 keV. The source photon spectrum in the 15-200 keV energy range and its variability over the pulse phase are reported. Approximately the shape of the spectrum can be described by the canonical model for X-ray pulsars with power-law index g~1.1, cut-off energy E_c~23 keV and folding energy E_f~19 keV. All these parameters are weakly dependent on the luminosity. The most significant deviation from this continuum is observed at ~100 keV in the spectrum of the main pulse maximum. This feature is interpreted as a cyclotron line. Comparison of the HEXE data with the data from BATSE/CGRO (Bildsten et al., 1997) shows that in the high luminosity state (L~10^38 erg/s) the pulsars pulse profile differs substantially from the pulse profile in the low-luminosity (L~5x10^36 erg/s) state. This difference is explained by the qualitative change of the polar cap structure with formation of the accretion columns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا